scispace - formally typeset
Search or ask a question

Showing papers in "SAE International Journal of Commercial Vehicles in 2014"


Journal ArticleDOI
TL;DR: In this article, a series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights.
Abstract: This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during more » which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW. « less

197 citations




Journal ArticleDOI
TL;DR: In this paper, a real-time 360 degree surround system with parking aid feature is presented, which is a very convenient parking and blind spot aid system, where four fisheye cameras are mounted around a vehicle to cover the whole surrounding area.
Abstract: In this paper, we present a real-time 360 degree surround system with parking aid feature, which is a very convenient parking and blind spot aid system. In the proposed system, there are four fisheye cameras mounted around a vehicle to cover the whole surrounding area. After correcting the distortion of four fisheye images and registering all images on a planar surface, a flexible stitching method was developed to smooth the seam of adjacent images away to generate a high-quality result. In the post-process step, a unique brightness balance algorithm was proposed to compensate the exposure difference as the images are not captured with the same exposure condition. In addition, a unique parking guidance feature is applied on the surround view scene by utilizing steering wheel angle information as well as vehicle speed information.

39 citations






Journal ArticleDOI
TL;DR: In this article, a comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of hybrid powertrain technologies.
Abstract: We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile ourmore » estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

18 citations



Journal ArticleDOI
TL;DR: In this article, the influence of moving ground and rotating wheels on the flow field of a saloon vehicle was investigated. But the authors focused on the effect of the rotational front wheel and rotating rear wheel on the overall flow field.
Abstract: Automotive aerodynamics measurements and simulations now routinely use a moving ground and rotating wheels (MVG&RW), which is more representative of on-road conditions than the fixed ground-fixed wheel (FG&FW) alternative. This can be understood as a combination of three elements: (a) moving ground (MVG), (b) rotating front wheels (RWF) and (c) rotating rear wheels (RWR). The interaction of these elements with the flow field has been explored to date by mainly experimental means. This paper presents a mainly computational (CFD) investigation of the effect of RWF and RWR, in combination with MVG, on the flow field around a saloon vehicle. The influence of MVG&RW is presented both in terms of a combined change from a FG&FW baseline and the incremental effects seen by the addition of each element separately. For this vehicle, noticeable decrease in both drag and rear lift is shown when adding MVG&RW, whereas front lift shows little change. The same trends are seen in both CFD and experimental data. The addition of MVG alone increases both drag and front lift, whereas rear lift decreases significantly. The addition of RWF alone has little effect on the global results (aside from lift), whereas the addition of RWR alone decreases both drag and rear lift significantly. Combining the incremental changes produces values that align well to the MVG&RW case, with the exception of front lift. This shows similar trends to previously published work, both the noticeable drag decrease due to the addition of MVG&RW, and the contributions of the individual components.


Journal ArticleDOI
TL;DR: In this paper, simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size were included in the study, which revealed that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency.
Abstract: We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

Journal ArticleDOI
TL;DR: In this paper, two comparative studies between CFD and wind-tunnel tests are presented, one is a comparison between cooling performance simulations and chassis dynamometer measurements; the other study is a comparative between external aerodynamics simulations and windtunnel measurements.
Abstract: Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area.When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests.In this paper, two comparative studies are presented. One is a comparison between cooling performance simulations and chassis dynamometer measurements; the other study is a comparison between external aerodynamics simulations and wind-tunnel measurements.The purpose of this study was to evaluate and develop methods and models for determining aerodynamic drag and cooling performance, which ultimately will be used to develop more energy-efficient cooling of heavy trucks.The results from the two comparative studies showed that there was in general good agreement between CFD and wind-tunnel measurements. For the cooling performance simulations, the analysed parameters were very close to the measured values. For the external aerodynamics simulations, the results were not easy to analyse. The overall results were still satisfactory; for the simulated yaw angles, the drag coefficient (CD) values were less than 4.1% different from measured data.







Journal ArticleDOI
TL;DR: Xu et al. as discussed by the authors presented the modeling and characteristic analysis of rollplane and pitch-plane combined Hydraulically Interconnected Suspension (HIS) system, and the modal analysis showed the unique modes-decoupling property of HIS system.
Abstract: This paper presents the modeling and characteristic analysis of roll-plane and pitch-plane combined Hydraulically Interconnected Suspension (HIS) system. Vehicle dynamic analysis is carried out with four different configurations for comparison. They are: 1) vehicle with spring-damper only, 2) vehicle with roll-plane HIS, 3) vehicle with pitch-plane HIS and 4) vehicle with roll and pitch combined HIS. The modal analysis shows the unique modes-decoupling property of HIS system. The roll-plane HIS increases roll stiffness only without affecting other modes, and similarly pitch-plane HIS increases the pitch stiffness only with minimum influence on other modes. When roll and pitch plane HIS are integrated, the vehicle ride comfort and handling stability can be improved simultaneously without compromise. A detailed analysis and discussion of the results are provided to conclude the paper. CITATION: Xu, G. and Zhang, N., "Characteristic Analysis of Roll and Pitch Independently Controlled Hydraulically Interconnected Suspension,"






Journal ArticleDOI
TL;DR: In this article, the authors presented a methodology to develop and validate fuel consumption models of Refuse Collecting Vehicles (RCVs) based on the improvement of the classic approach, and the validation methodology is based on recording vehicle drive cycles by the use of a low cost data acquisition system and post processing them by using GPS and map data.
Abstract: This paper presents a novel methodology to develop and validate fuel consumption models of Refuse Collecting Vehicles (RCVs). The model development is based on the improvement of the classic approach. The validation methodology is based on recording vehicle drive cycles by the use of a low cost data acquisition system and post processing them by the use of GPS and map data. The corrected data are used to feed the mathematical energy models and the fuel consumption is estimated. In order to validate the proposed system, the fuel consumption estimated from these models is compared with real filling station refueling records. This comparison shows that these models are accurate to within 5%.

Journal ArticleDOI
TL;DR: This paper presents a prototype diagnostic decision support system cap that helps to identify when a truck or bus suffers from a breakdown and bring it back on the road as soon as possible.
Abstract: When a truck or bus suffers from a breakdown it is important that the vehicle comes back on the road as soon as possible. In this paper we present a prototype diagnostic decision support system cap ...