scispace - formally typeset
Search or ask a question

Showing papers in "SAE International journal of engines in 2018"


Journal ArticleDOI
TL;DR: In this article, a review of global regulatory and technological advances pertaining to emissions from internal combustion engine (ICE) driven vehicles and machinery is presented, including improved efficiency, advanced aftertreatment systems, hybridization, low carbon fuels and predictive control strategies.
Abstract: For more than two decades [1,2], Corning has served the community with an annual review of global regulatory and technological advances pertaining to emissions from internal combustion engine (ICE) driven vehicles and machinery. We continue with a review for the year 2020, which will be remembered by COVID and the significant negative impact it had on the industry. However, it also provided a glimpse of the possible improvement in air quality with reduced anthropogenic emissions. It was a year marked by goals set for climate change mitigation via reduced fossil fuel use by the transportation sector. Governments stepped up plans to accelerate the adoption of zero tailpipe emitting vehicles. However, any transformation of the transportation sector is not going to happen overnight due to the scale of the infrastructure and technology challenges. A case in point is China, which announced a technology roadmap which envisions half of the vehicles to be hybrids in 2035. The ICE is clearly expected to be part of the powertrain mix for a long time and as such, solutions are needed to attain near-zero emissions, even with conventional engines. The industry is naturally responding to all of these changes and several technology solutions are being advanced, including improved efficiency, advanced aftertreatment systems, hybridization, low carbon fuels and predictive control strategies. It was also a year of heightened regulatory activity on what could perhaps be the last major regulations on criteria pollutants in advanced markets. California adopted the Low NOx Omnibus rule requiring a 90% reduction in NOx from heavy-duty vehicles. Elements of light-duty LEV IV regulations were discussed, which could culminate in a fleet averaged NMOG + NOx limit of 20 mg/mi. Proposals were made for Euro 7/VII, and several major changes put forth for consideration, including tightening of limits, inclusion of sub-23 nm particles, an emphasis on urban driving and an overall shift in certification based on real-world driving emission measurements with limited allowed exclusions. Limits may be imposed on previously non-regulated species such as NH3 which will drive additional content. Technologies are advancing, both on engines and aftertreatment systems. Light-duty gasoline engines are approaching 45% BTE. Heavy duty diesel engines are approaching 55% BTE. We cover some of the major technologies being pursued to extend these gains. Gasoline particulate filters are now rapidly becoming a mature technology for light-duty vehicles in Europe and China, although the next round of regulations will require a significant increase in filtration efficiency. Concept studies show pathways to reduce gas emissions well below the next proposed limits. A major thrust on the heavy-duty side is to analyze systems capable of meeting the low NOx requirements while also extending durability. We cover the various leading approaches and latest advances in de-NOx technologies. We also briefly touch upon fuels, which will play a critical role, whether in improving efficiency of advanced combustion such as gasoline compression ignition or in their role with reducing greenhouse gas emissions through renewable or synthetic fuels. Finally, as we approach near-zero tailpipe emission levels, non-tailpipe emissions could become a significant fraction of the overall particulate inventory. © 2021 SAE International. All rights reserved.

344 citations


Journal ArticleDOI
TL;DR: In this article, the Co-Optimization of Fuels and Engines (Co-Optima) project sponsored by the U.S. Department of Energy's Office of Vehicle Technologies and Office of Energy Efficiency and Renewable Energy (EERE) under Contract No. DEAC02-06CH11357 is described.
Abstract: The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy (DOE) Office of Science laboratory, is operated under Contract No. DEAC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in the said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This research was partially funded by DOE's Office of Vehicle Technologies and Office of Energy Efficiency and Renewable Energy (EERE) under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh, Kevin Stork, and Leo Breton, program managers at DOE, for their support. This research was conducted as part of the Co-Optimization of Fuels and Engines (Co-Optima) project sponsored by the U.S. DOE Office of EERE, Bioenergy Technologies and Vehicle Technologies Offices

36 citations



Proceedings ArticleDOI
TL;DR: Bommisetty et al. as discussed by the authors used a conventional CI engine modified for spark ignition (SI) NG operation to investigate the effects of methane and a C1-C4 alkane blend on main combustion parameters like in-cylinder pressure, apparent heat release rate, IMEP, etc.
Abstract: Gas Composition Effects in a CI Engine Converted to SI Natural Gas Operation Hemanth Kumar Bommisetty Low-carbon fuels such as natural gas (NG) have the potential to lower the demand of petroleum-based fuels, reduce engine-out emissions, and increase IC engine thermal efficiency. One of the most rapid and efficient use of NG in the transportation sector would be as a direct replacement of the diesel fuel in compression ignition (CI) engines without any major engine modifications to the combustion chamber such as new pistons and/or engine head. An issue is the large variation in NG composition with the location and age of the gas well across U.S., which would affect engine operation, as well as the technology integration with emissions after treatment systems. This thesis describes the use a conventional CI engine modified for spark ignition (SI) NG operation to investigate the effects of methane and a C1-C4 alkane blend on main combustion parameters like in-cylinder pressure, apparent heat release rate, IMEP, etc. Steady-state engine experiments were conducted at several operating conditions that changed spark timing, engine speed, and equivalence ratio. The study found that C1-C4 alkane blend operation increased peak pressure, IMEP, and indicated thermal efficiency compared to methane, for all the operating conditions investigated in this work. This suggests caution when translating methane-based experimental observations to real world NG operation, even for NG with high methane percentage as the one used in this work. As many NG studies in the literature used methane as an NG surrogate, a better understanding of real fuel effects in diesel-like combustion environments could be important for the successful conversion of conventional diesel engines to NG operation.

27 citations


Proceedings ArticleDOI
TL;DR: In this paper, the authors have partially supported by FEDER and the Government of Spain through project TRA2016-79185-R and by the European Union's Horizon 2020 Framework Programme for research, technological development and demonstration under grant agreement number 723976.
Abstract: This research has been partially supported by FEDER and the Government of Spain through project TRA2016-79185-R and by the European Union’s Horizon 2020 Framework Programme for research, technological development and demonstration under grant agreement number 723976.

27 citations




Journal ArticleDOI
TL;DR: The equipment used in this work was partially supported by FEDER and the Spanish Government through grant no. DE-AC02-06CH11357 as mentioned in this paper, and Gomez-Soriano et al. used CONVERGE software to perform CFD calculations.
Abstract: The equipment used in this work was partially supported by FEDER and the Spanish Government through grant no. DPI2015-70464-R and by FEDER project funds “Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)”, framed in the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economia y Competitividad. J. Gomez-Soriano was partially supported through contract FPI-S2-2016-1353 of the “Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-16)” of Universitat Politecnica de Valencia. The submitted manuscript was created partly by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02- 06CH11357. This research was partly funded by U.S. DOE Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02- 06CH11357. The authors wish to thank Gurpreet Singh and Leo Breton, program managers at DOE, for their support. The authors would also like to express their gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performing the CFD calculations using CONVERGE software.

26 citations




Proceedings ArticleDOI
TL;DR: In this paper, Mallet et al. presented a partially funded research by the European Union's Horizon 2020 Framework Programme for research, technological development and demonstration under grant agreement 723976 (DiePeR) and by the Spanish government under the grant agreement TRA2017-89894-R.
Abstract: This research has been partially funded by the European Union’s Horizon 2020 Framework Programme for research, technological development and demonstration under grant agreement 723976 (“DiePeR”) and by the Spanish government under the grant agreement TRA2017-89894-R. The authors wish to thank Renault SAS, especially P. Mallet and E. Gaiffas, for supporting this research.







Proceedings ArticleDOI
TL;DR: The problematic points of PEARS algorithm are detected and analyzed, then a solution to minimize mode-shifting events is proposed, and the improved PEARs algorithm is integrated in a design methodology that can generate and test several candidate powertrains in a short period of time.
Abstract: The production of multi-mode power-split hybrid vehicles has been implemented for some years now and it is expected to continually grow over the next decade. Control strategy still represents one of the most challenging aspects in the design of these vehicles. Finding an effective strategy to obtain the optimal solution with light computational cost is not trivial. In previous publications, a Powerweighted Efficiency Analysis for Rapid Sizing (PEARS) algorithm was found to be a very promising solution. The issue with implementing a PEARS technique is that it generates an unrealistic mode-shifting schedule. In this paper, the problematic points of PEARS algorithm are detected and analyzed, then a solution to minimize mode-shifting events is proposed. The improved PEARS algorithm is integrated in a design methodology that can generate and test several candidate powertrains in a short period of time.

Journal ArticleDOI
TL;DR: The design and performance of the 1.5-liter Honda engine are compared to several other past, present, and future downsized-boosted engines and potential advancements are evaluated.
Abstract: As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies to support the setting of appropriate national greenhouse gas standards and to evaluate the impact of new technologies on in- use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/CAN bus data were recorded. This paper documents the test results for idle, low, medium and high load engine operation, as well as motoring torque, wide-open throttle torque and fuel consumption during transient operation using both EPA Tier 2 and Tier 3 test fuels. Particular attention is given to characterizing enrichment control during high load engine operation. Results are used to create complete engine fuel consumption and efficiency maps and estimate CO2 emissions using EPA’s ALPHA full vehicle simulation model, over regulatory drive cycles. The design and performance of the 1.5-liter Honda engine are compared to several other past, present, and future downsized-boosted engines and potential advancements are evaluated.