scispace - formally typeset
Search or ask a question

Showing papers in "Sub-cellular biochemistry in 2017"


Book ChapterDOI
TL;DR: The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms offibrin formation, its organization, and properties.
Abstract: Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin.

409 citations


Book ChapterDOI
TL;DR: This chapter reviews improvements in knowledge of the fundamentals of coiled-coil folding and assembly, and highlights new coiled coil-based materials and applications that this new understanding of sequence-to-structure relationships is opening up.
Abstract: α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

111 citations


Book ChapterDOI
TL;DR: The principles by which coiled coils are structured are outlined, the determinants of their folding and stability are reviewed, and an overview of their diverse architectures are presented.
Abstract: α-Helical coiled coils constitute one of the most diverse folds yet described. They range in length over two orders of magnitude; they form rods, segmented ropes, barrels, funnels, sheets, spirals, and rings, which encompass anywhere from two to more than 20 helices in parallel or antiparallel orientation; they assume different helix crossing angles, degrees of supercoiling, and packing geometries. This structural diversity supports a wide range of biological functions, allowing them to form mechanically rigid structures, provide levers for molecular motors, project domains across large distances, mediate oligomerization, transduce conformational changes and facilitate the transport of other molecules. Unlike almost any other protein fold known to us, their structure can be computed from parametric equations, making them an ideal model system for rational protein design. Here we outline the principles by which coiled coils are structured, review the determinants of their folding and stability, and present an overview of their diverse architectures.

72 citations


Book ChapterDOI
TL;DR: This chapter summarises the current understanding of elongation and division in B. subtilis, with particular emphasis on the cytoskeletal proteins MreB and FtsZ, and highlights where the major gaps in understanding remain.
Abstract: Bacillus subtilis is the best described member of the Gram positive bacteria. It is a typical rod shaped bacterium and grows by elongation in its long axis, before dividing at mid cell to generate two similar daughter cells. B. subtilis is a particularly interesting model for cell cycle studies because it also carries out a modified, asymmetrical division during endospore formation, which can be simply induced by starvation. Cell growth occurs strictly by elongation of the rod, which maintains a constant diameter at all growth rates. This process involves expansion of the cell wall, requiring intercalation of new peptidoglycan and teichoic acid material, as well as controlled hydrolysis of existing wall material. Actin-like MreB proteins are the key spatial regulators that orchestrate the plethora of enzymes needed for cell elongation, many of which are thought to assemble into functional complexes called elongasomes. Cell division requires a switch in the orientation of cell wall synthesis and is organised by a tubulin-like protein FtsZ. FtsZ forms a ring-like structure at the site of impending division, which is specified by a range of mainly negative regulators. There it recruits a set of dedicated division proteins to form a structure called the divisome, which brings about the process of division. During sporulation, both the positioning and fine structure of the division septum are altered, and again, several dedicated proteins that contribute specifically to this process have been identified. This chapter summarises our current understanding of elongation and division in B. subtilis, with particular emphasis on the cytoskeletal proteins MreB and FtsZ, and highlights where the major gaps in our understanding remain.

63 citations


Book ChapterDOI
TL;DR: Tropomyosin is the archetypal coiled coil, yet studies of its structure and function have proven it to be a dynamic regulator of actin filament function in muscle and non-muscle cells as discussed by the authors.
Abstract: Tropomyosin is the archetypal-coiled coil, yet studies of its structure and function have proven it to be a dynamic regulator of actin filament function in muscle and non-muscle cells. Here we review aspects of its structure that deviate from canonical leucine zipper coiled coils that allow tropomyosin to bind to actin, regulate myosin, and interact directly and indirectly with actin-binding proteins. Four genes encode tropomyosins in vertebrates, with additional diversity that results from alternate promoters and alternatively spliced exons. At the same time that periodic motifs for binding actin and regulating myosin are conserved, isoform-specific domains allow for specific interaction with myosins and actin filament regulatory proteins, including troponin. Tropomyosin can be viewed as a universal regulator of the actin cytoskeleton that specifies actin filaments for cellular and intracellular functions.

48 citations


Book ChapterDOI
TL;DR: This chapter will summarize the current knowledge of the architecture of the Ccr4-Not complex and of the structure of its constituents.
Abstract: The Ccr4-Not complex is an essential multi-subunit protein complex that plays a fundamental role in eukaryotic mRNA metabolism and has a multitude of different roles that impact eukaryotic gene expression. It has a conserved core of three Not proteins, the Ccr4 protein, and two Ccr4 associated factors, Caf1 and Caf40. A fourth Not protein, Not4, is conserved, but is only a stable subunit of the complex in yeast. Certain subunits have been duplicated during evolution, with functional divergence, such as Not3 in yeast, and Ccr4 or Caf1 in human. However the complex includes only one homolog for each protein. In addition, species-specific subunits are part of the complex, such as Caf130 in yeast or Not10 and Not11 in human. Two conserved catalytic functions are associated with the complex, deadenylation and ubiquitination. The complex adopts an L-shaped structure, in which different modules are bound to a large Not1 scaffold protein. In this chapter we will summarize our current knowledge of the architecture of the complex and of the structure of its constituents.

47 citations


Book ChapterDOI
TL;DR: GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins, and understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Abstract: Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization, biomolecular interactions, post-translational modifications, and variations in subcellular localization. Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.

42 citations


Book ChapterDOI
TL;DR: The history and the current state of ideas related to the mechanism of size regulation of the thick and thin filaments in vertebrate striated muscles are discussed, with evidence pointing to titin and nebulin stabilizing structures of the respective filaments.
Abstract: In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or ‘molecular rulers’, terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.

40 citations


Book ChapterDOI
TL;DR: The human α2-macroglobulin homolog regulates proteolysis in complex biological processes, but also defends the host organism against attacks by external toxins and other virulence factors during infection and envenomation.
Abstract: α2-macroglobulins are broad-spectrum endopeptidase inhibitors, which have to date been characterised from metazoans (vertebrates and invertebrates) and Gram-negative bacteria. Their structural and biochemical properties reveal two related modes of action: the “Venus flytrap” and the “snap-trap” mechanisms. In both cases, peptidases trigger a massive conformational rearrangement of α2-macroglobulin after cutting in a highly flexible bait region, which results in their entrapment. In some homologs, a second action takes place that involves a highly reactive β-cysteinyl-γ-glutamyl thioester bond, which covalently binds cleaving peptidases and thus contributes to the further stabilization of the enzyme:inhibitor complex. Trapped peptidases are still active, but have restricted access to their substrates due to steric hindrance. In this way, the human α2-macroglobulin homolog regulates proteolysis in complex biological processes, such as nutrition, signalling, and tissue remodelling, but also defends the host organism against attacks by external toxins and other virulence factors during infection and envenomation. In parallel, it participates in several other biological functions by modifying the activity of cytokines and regulating hormones, growth factors, lipid factors and other proteins, which has a great impact on physiology. Likewise, bacterial α2-macroglobulins may participate in defence by protecting cell wall components from attacking peptidases, or in host-pathogen interactions through recognition of host peptidases and/or antimicrobial peptides. α2-macroglobulins are more widespread than initially thought and exert multifunctional roles in both eukaryotes and prokaryotes, therefore, their on-going study is essential.

39 citations


Book ChapterDOI
TL;DR: This chapter highlights recent structural and biochemical advances shedding light on the assembly and architecture of cullin-RING ligases, their dynamic regulation by a variety of host factors, and their manipulation by viral pathogens and small molecules.
Abstract: Ubiquitination is a highly conserved post-translational modification in eukaryotes, well known for targeting proteins for degradation by the 26S proteasome. Proteins destined for proteasomal degradation are selected by E3 ubiquitin ligases. Cullin-RING E3 ubiquitin ligases (CRLs) are the largest superfamily of E3 ubiquitin ligases, with over 400 members known in mammals. These modular complexes are tightly regulated in the cell. In this chapter, we highlight recent structural and biochemical advances shedding light on the assembly and architecture of cullin-RING ligases, their dynamic regulation by a variety of host factors, and their manipulation by viral pathogens and small molecules.

38 citations


Book ChapterDOI
TL;DR: A critical view of the present knowledge of the aminoacyl-tRNA synthetase complex in 3D is presented, to shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.
Abstract: Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.

Book ChapterDOI
TL;DR: Current research into stressosome systems is reviewed and the functional implications of the unique structure of these signalling complexes are discussed, indicating an evolutionary advantage afforded by stressosom complexes.
Abstract: The stressosome is a multi-protein signal integration and transduction hub found in a wide range of bacterial species. The role that the stressosome plays in regulating the transcription of genes involved in the general stress response has been studied most extensively in the Gram-positive model organism Bacillus subtilis. The stressosome receives and relays the signal(s) that initiate a complex phosphorylation-dependent partner switching cascade, resulting in the activation of the alternative sigma factor σB. This sigma factor controls transcription of more than 150 genes involved in the general stress response. X-ray crystal structures of individual components of the stressosome and single-particle cryo-EM reconstructions of stressosome complexes, coupled with biochemical and single cell analyses, have permitted a detailed understanding of the dynamic signalling behaviour that arises from this multi-protein complex. Furthermore, bioinformatics analyses indicate that genetic modules encoding key stressosome proteins are found in a wide range of bacterial species, indicating an evolutionary advantage afforded by stressosome complexes. Interestingly, the genetic modules are associated with a variety of signalling modules encoding secondary messenger regulation systems, as well as classical two-component signal transduction systems, suggesting a diversification in function. In this chapter we review the current research into stressosome systems and discuss the functional implications of the unique structure of these signalling complexes.

Book ChapterDOI
TL;DR: Improvements in electron microscopy and image processing have permitted significantly higher resolutions to be achieved when studying isolated actin and myosin filaments, and the latest analysis is starting to reveal the way that the α-helical coiled-coil myOSin rods are packed to give the filament backbones.
Abstract: In the last decade, improvements in electron microscopy and image processing have permitted significantly higher resolutions to be achieved (sometimes <1 nm) when studying isolated actin and myosin filaments. In the case of actin filaments the changing structure when troponin binds calcium ions can be followed using electron microscopy and single particle analysis to reveal what happens on each of the seven non-equivalent pseudo-repeats of the tropomyosin α-helical coiled-coil. In the case of the known family of myosin filaments not only are the myosin head arrangements under relaxing conditions being defined, but the latest analysis, also using single particle methods, is starting to reveal the way that the α-helical coiled-coil myosin rods are packed to give the filament backbones.

Book ChapterDOI
TL;DR: Using X-ray crystallography on multiple overlapping fragments of IF proteins, the atomic structure of the nearly complete rod domain has been determined and some specific challenges of this procedure, such as crystallization and diffraction data phasing by molecular replacement are discussed.
Abstract: Intermediate filaments (IFs), together with microtubules and actin microfilaments, are the three main cytoskeletal components in metazoan cells. IFs are formed by a distinct protein family, which is made up of 70 members in humans. Most IF proteins are tissue- or organelle-specific, which includes lamins, the IF proteins of the nucleus. The building block of IFs is an elongated dimer, which consists of a central α-helical ‘rod’ domain flanked by flexible N- and C-terminal domains. The conserved rod domain is the ‘signature feature’ of the IF family. Bioinformatics analysis reveals that the rod domain of all IF proteins contains three α-helical segments of largely conserved length, interconnected by linkers. Moreover, there is a conserved pattern of hydrophobic repeats within each segment, which includes heptads and hendecads. This defines the presence of both left-handed and almost parallel coiled-coil regions along the rod length. Using X-ray crystallography on multiple overlapping fragments of IF proteins, the atomic structure of the nearly complete rod domain has been determined. Here, we discuss some specific challenges of this procedure, such as crystallization and diffraction data phasing by molecular replacement. Further insights into the structure of the coiled coil and the terminal domains have been obtained using electron paramagnetic resonance measurements on the full-length protein, with spin labels attached at specific positions. This atomic resolution information, as well as further interesting findings, such as the variation of the coiled-coil stability along the rod length, provide clues towards interpreting the data on IF assembly, collected by a range of methods. However, a full description of this process at the molecular level is not yet at hand.

Book ChapterDOI
TL;DR: Peroxiredoxins are a large and conserved family of peroxidases that are considered to be the primary cellular guardians against oxidative stress in all living organisms and to exhibit chaperone-like properties when cells are under oxidative or thermal stress.
Abstract: Peroxiredoxins (Prxs) are a large and conserved family of peroxidases that are considered to be the primary cellular guardians against oxidative stress in all living organisms. Prxs share a thioredoxin fold and contain a highly-reactive peroxidatic cysteine in a specialised active-site environment that is able to reduce their peroxide substrates. The minimal functional unit for Prxs are either monomers or dimers, but many dimers assemble into decameric rings. Ring structures can further form a variety of high molecular weight complexes. Many eukaryotic Prxs contain a conserved GGLG and C-terminal YF motif that confer sensitivity to elevated levels of peroxide, leading to hyperoxidation and inactivation. Inactive forms of Prxs can be re-reduced by the enzyme sulfiredoxin, in an ATP-dependent reaction. Cycles of hyperoxidation and reactivation are considered to play an integral role in a variety of H2O2-mediated cell signalling pathways in both stress and non-stress conditions. Prxs are also considered to exhibit chaperone-like properties when cells are under oxidative or thermal stress. The roles of various types of covalent modifications, e.g. acetylation and phosphorylation are also discussed. The ability of Prxs to assemble into ordered arrays such as nanotubes is currently being exploited in nanotechnology.

Book ChapterDOI
TL;DR: Three steps are proposed for the full process of cytokinesis: pf bending generates a constriction force on the inner membrane, but the rigid peptidoglycan wall initially prevents any invagination; (b) downstream proteins associate to the Z ring and remodel the peptidscan, permitting it to follow the constricting FtsZ to a diameter of ~250 nm; the final steps of closure of the septum and membrane fusion are achieved by excess membrane synthesis and membrane fluctuations
Abstract: FtsZ assembles in vitro into protofilaments (pfs) that are one subunit thick and ~50 subunits long. In vivo these pfs assemble further into the Z ring, which, along with accessory division proteins, constricts to divide the cell. We have reconstituted Z rings in liposomes in vitro, using pure FtsZ that was modified with a membrane targeting sequence to directly bind the membrane. This FtsZ-mts assembled Z rings and constricted the liposomes without any accessory proteins. We proposed that the force for constriction was generated by a conformational change from straight to curved pfs. Evidence supporting this mechanism came from switching the membrane tether to the opposite side of the pf. These switched-tether pfs assembled “inside-out” Z rings, and squeezed the liposomes from the outside, as expected for the bending model. We propose three steps for the full process of cytokinesis: (a) pf bending generates a constriction force on the inner membrane, but the rigid peptidoglycan wall initially prevents any invagination; (b) downstream proteins associate to the Z ring and remodel the peptidoglycan, permitting it to follow the constricting FtsZ to a diameter of ~250 nm; the final steps of closure of the septum and membrane fusion are achieved by excess membrane synthesis and membrane fluctuations.

Book ChapterDOI
TL;DR: The structure of the 453 kDa heterooctameric PRMT5:MEP50 complex bound to an S-adenosylmethionine analog and a substrate peptide provides valuable insights into this intriguing target.
Abstract: Protein arginine methyltransferase 5 (PRMT5) plays multiple roles in cellular processes at different stages of the cell cycle in a tissue specific manner. PRMT5 in complex with MEP50/p44/WDR77 associates with a plethora of partner proteins to symmetrically dimethylate arginine residues on target proteins in both the nucleus and the cytoplasm. Overexpression of PRMT5 has been observed in several cancers, making it an attractive drug target. The structure of the 453 kDa heterooctameric PRMT5:MEP50 complex bound to an S-adenosylmethionine analog and a substrate peptide provides valuable insights into this intriguing target.

Book ChapterDOI
TL;DR: This chapter aims to depict the spectrum of functional properties they provide in different proteins, to identify common themes and their molecular basis, with an emphasis on new insights gained into dynamic aspects.
Abstract: Coiled coils appear in countless structural contexts, as appendages to small proteins, as parts of multi-domain proteins, and as building blocks of filaments. Although their structure is unpretentious and their basic properties are understood in great detail, the spectrum of functional properties they provide in different proteins has become increasingly complex. This chapter aims to depict this functional spectrum, to identify common themes and their molecular basis, with an emphasis on new insights gained into dynamic aspects.

Book ChapterDOI
TL;DR: The three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life is discussed, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus.
Abstract: In all living organisms, the flow of genetic information is a two-step process: first DNA is transcribed into RNA, which is subsequently used as template for protein synthesis during translation. In bacteria, archaea and eukaryotes, transcription is carried out by multi-subunit RNA polymerases (RNAPs) sharing a conserved architecture of the RNAP core. RNAPs catalyse the highly accurate polymerisation of RNA from NTP building blocks, utilising DNA as template, being assisted by transcription factors during the initiation, elongation and termination phase of transcription. The complexity of this highly dynamic process is reflected in the intricate network of protein-protein and protein-nucleic acid interactions in transcription complexes and the substantial conformational changes of the RNAP as it progresses through the transcription cycle.In this chapter, we will first briefly describe the early work that led to the discovery of multisubunit RNAPs. We will then discuss the three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus. Another section will focus on transcription factors and their role in regulating the RNA polymerase throughout the different phases of the transcription cycle. This includes a discussion of the molecular mechanisms and dynamic events that govern transcription initiation, elongation and termination.

Book ChapterDOI
TL;DR: Structural studies of archaeal tubulin superfamily proteins provide a definitive contribution to the cytoskeletal field, showing which protein-types must have developed prior to the divergence of archaea and eukaryotes.
Abstract: In comparison with bacteria and eukaryotes, the large and diverse group of microorganisms known as archaea possess a great diversity of cytoskeletal proteins, including members of the tubulin superfamily. Many species contain FtsZ, CetZ and even possible tubulins; however, some major taxonomic groups do not contain any member of the tubulin superfamily. Studies using the model archaeon, Halferax volcanii have recently been instrumental in defining the fundamental roles of FtsZ and CetZ in archaeal cell division and cell shape regulation. Structural studies of archaeal tubulin superfamily proteins provide a definitive contribution to the cytoskeletal field, showing which protein-types must have developed prior to the divergence of archaea and eukaryotes. Several regions of the globular core domain – the “signature” motifs – combine in the 3D structure of the common molecular fold to form the GTP-binding site. They are the most conserved sequence elements and provide the primary basis for identification of new superfamily members through homology searches. The currently well-characterised proteins also all share a common mechanism of GTP-dependent polymerisation, in which GTP molecules are sandwiched between successive subunits that are arranged in a head-to-tail manner. However, some poorly-characterised archaeal protein families retain only some of the signature motifs and are unlikely to be capable of dynamic polymerisation, since the promotion of depolymerisation by hydrolysis to GDP depends on contributions from both subunits that sandwich the nucleotide in the polymer.

Book ChapterDOI
TL;DR: Although morphologically resembling bacteria, archaea constitute a distinct domain of life with a closer affiliation to eukaryotes than to bacteria, this similarity is seen in the machineries for a number of essential cellular processes, including DNA replication and gene transcription.
Abstract: Although morphologically resembling bacteria, archaea constitute a distinct domain of life with a closer affiliation to eukaryotes than to bacteria. This similarity is seen in the machineries for a number of essential cellular processes, including DNA replication and gene transcription. Perhaps surprisingly, given their prokaryotic morphology, some archaea also possess a core cell division apparatus that is related to that involved in the final stages of membrane abscission in vertebrate cells, the ESCRT machinery.

Book ChapterDOI
TL;DR: Cytokinesis in E. coli is organized by a cytoskeletal element designated the Z ring, which is formed at midcell by the coalescence of FtsZ filaments tethered to the membrane by interaction of FTSZ's conserved C-terminal peptide with two membrane-associated proteins, FtsA and ZipA.
Abstract: Cytokinesis in E. coli is organized by a cytoskeletal element designated the Z ring. The Z ring is formed at midcell by the coalescence of FtsZ filaments tethered to the membrane by interaction of FtsZ’s conserved C-terminal peptide (CCTP) with two membrane-associated proteins, FtsA and ZipA. Although interaction between an FtsZ monomer and either of these proteins is of low affinity, high affinity is achieved through avidity – polymerization linked CCTPs interacting with the membrane tethers. The placement of the Z ring at midcell is ensured by antagonists of FtsZ polymerization that are positioned within the cell and target FtsZ filaments through the CCTP. The placement of the ring is reinforced by a protein network that extends from the terminus (Ter) region of the chromosome to the Z ring. Once the Z ring is established, additional proteins are recruited through interaction with FtsA, to form the divisome. The assembled divisome is then activated by FtsN to carry out septal peptidoglycan synthesis, with a dynamic Z ring serving as a guide for septum formation. As the septum forms, the cell wall is split by spatially regulated hydrolases and the outer membrane invaginates in step with the aid of a transenvelope complex to yield progeny cells.

Book ChapterDOI
TL;DR: The overexpression of small chaperones or the interference with inflammatory signalling in several settings has been shown to rescue severe tissue pathologies that resulted from the expression of mutant IF proteins, suggesting a lack of understanding how IF proteins participate in signalling processes.
Abstract: Cytoplasmic intermediate filaments (IFs) represent a major cytoskeletal network contributing to cell shape, adhesion and migration as well as to tissue resilience and renewal in numerous bilaterians, including mammals. The observation that IFs are dispensable in cultured mammalian cells, but cause tissue-specific, life-threatening disorders, has pushed the need to investigate their function in vivo. In keeping with human disease, the deletion or mutation of murine IF genes resulted in highly specific pathologies. Epidermal keratins, together with desmin, are essential to protect corresponding tissues against mechanical force but also participate in stabilizing cell adhesion and in inflammatory signalling. Surprisingly, other IF proteins contribute to tissue integrity to a much lesser extent than anticipated, pointing towards their role in stress situations. In support, the overexpression of small chaperones or the interference with inflammatory signalling in several settings has been shown to rescue severe tissue pathologies that resulted from the expression of mutant IF proteins. It stills remains an open issue whether the wide range of IF disorders share similar pathomechanisms. Moreover, we lack an understanding how IF proteins participate in signalling processes. Now, with a large number of mouse models in hand, the next challenge will be to develop organotypic cell culture models to dissect pathomechanisms at the molecular level, to employ Crispr/Cas-mediated genome engineering to optimize models and, finally, to combine available animal models with medicinal chemistry for the development of molecular therapies.

Book ChapterDOI
TL;DR: This chapter explores the mechanisms through which cytoskeletal proteins in C. crescentus orchestrate developmental processes by acting as scaffolds for protein recruitment, generating force, and/or restricting or directing the motion of molecular machines.
Abstract: Caulobacter crescentus, an aquatic Gram-negative α-proteobacterium, is dimorphic, as a result of asymmetric cell divisions that give rise to a free-swimming swarmer daughter cell and a stationary stalked daughter. Cell polarity of vibrioid C. crescentus cells is marked by the presence of a stalk at one end in the stationary form and a polar flagellum in the motile form. Progression through the cell cycle and execution of the associated morphogenetic events are tightly controlled through regulation of the abundance and activity of key proteins. In synergy with the regulation of protein abundance or activity, cytoskeletal elements are key contributors to cell cycle progression through spatial regulation of developmental processes. These include: polarity establishment and maintenance, DNA segregation, cytokinesis, and cell elongation. Cytoskeletal proteins in C. crescentus are additionally required to maintain its rod shape, curvature, and pole morphology. In this chapter, we explore the mechanisms through which cytoskeletal proteins in C. crescentus orchestrate developmental processes by acting as scaffolds for protein recruitment, generating force, and/or restricting or directing the motion of molecular machines. We discuss each cytoskeletal element in turn, beginning with those important for organization of molecules at the cell poles and chromosome segregation, then cytokinesis, and finally cell shape.

Book ChapterDOI
TL;DR: Recent studies have identified additional processes and factors that participate in preventing nucleoid septation during cell division and show multiple levels of redundancy as well as a striking diversity of mechanisms have evolved to protect cells against catastrophic bisection of the nucleoid.
Abstract: In most bacteria cell division is driven by the prokaryotic tubulin homolog, FtsZ, which forms the cytokinetic Z ring. Cell survival demands both the spatial and temporal accuracy of this process to ensure that equal progeny are produced with intact genomes. While mechanisms preventing septum formation at the cell poles have been known for decades, the means by which the bacterial nucleoid is spared from bisection during cell division, called nucleoid exclusion (NO), have only recently been deduced. The NO theory was originally posited decades ago based on the key observation that the cell division machinery appeared to be inhibited from forming near the bacterial nucleoid. However, what might drive the NO process was unclear. Within the last 10 years specific proteins have been identified as important mediators of NO. Arguably the best studied NO mechanisms are those employed by the Escherichia coli SlmA and Bacillus subtilis Noc proteins. Both proteins bind specific DNA sequences within selected chromosomal regions to act as timing devices. However, Noc and SlmA contain completely different structural folds and utilize distinct NO mechanisms. Recent studies have identified additional processes and factors that participate in preventing nucleoid septation during cell division. These combined data show multiple levels of redundancy as well as a striking diversity of mechanisms have evolved to protect cells against catastrophic bisection of the nucleoid. Here we discuss these recent findings with particular emphasis on what is known about the molecular underpinnings of specific NO machinery and processes.

Book ChapterDOI
TL;DR: The fascinating display of filamentous assemblies, including rope, striated cables and hexagonal laces together with the conditions required for their formation both in vitro and in vivo strongly resemble that of eukaryote IFs suggesting that these bacterial proteins are deservedly classified as part of the IF-family and that the current definition should be relaxed slightly to allow their inclusion.
Abstract: For years intermediate filaments (IF), belonging to the third class of filamentous cytoskeletal proteins alongside microtubules and actin filaments, were thought to be exclusive to metazoan cells. Structurally these eukaryote IFs are very well defined, consisting of globular head and tail domains, which flank the central rod-domain. This central domain is dominated by an α-helical secondary structure predisposed to form the characteristic coiled-coil, parallel homo-dimer. These elementary dimers can further associate, both laterally and longitudinally, generating a variety of filament-networks built from filaments in the range of 10 nm in diameter. The general role of these filaments with their characteristic mechano-elastic properties both in the cytoplasm and in the nucleus of eukaryote cells is to provide mechanical strength and a scaffold supporting diverse shapes and cellular functions.

Book ChapterDOI
TL;DR: The inflammasome complex functions as a platform for the proximity induced activation of effector caspases, which ultimately leads to the processing of the inflammatory cytokines pro- IL1β and pro-IL18 into their active forms, along with the cleavage of Gasdermin D, a key activator of cell death via pyroptosis.
Abstract: The inflammasome is a multi-molecular platform crucial to the induction of an inflammatory response to cellular danger. Recognition in the cytoplasm of endogenously and exogenously derived ligands initiates conformational change in sensor proteins, such as NLRP3, that permits the subsequent rapid recruitment of adaptor proteins, like ASC, and the resulting assembly of a large-scale inflammatory signalling platform. The assembly process is driven by sensor-sensor interactions as well as sensor-adaptor and adaptor-adaptor interactions. The resulting complex, which can reach diameters of around 1 micron, has a variable composition and stoichiometry. The inflammasome complex functions as a platform for the proximity induced activation of effector caspases, such as caspase-1 and caspase-8. This ultimately leads to the processing of the inflammatory cytokines pro-IL1β and pro-IL18 into their active forms, along with the cleavage of Gasdermin D, a key activator of cell death via pyroptosis.

Book ChapterDOI
TL;DR: This chapter investigates why protein-based materials are under-represented in materials science, and describes the silk proteins used in the laboratory as templates for information-containing polymers.
Abstract: Recombinant proteins are polymers that offer the materials engineer absolute control over chain length and composition: key attributes required for design of advanced polymeric materials. Through this control, these polymers can be encoded to contain information that enables them to respond as the environment changes. However, despite their promise, protein-based materials are under-represented in materials science. In this chapter we investigate why this is and describe recent efforts to address this. We discuss constraints limiting rational design of structural proteins for advanced materials; advantages and disadvantages of different recombinant expression platforms; and, methods to fabricate proteins into solid-state materials. Finally, we describe the silk proteins used in our laboratory as templates for information-containing polymers.

Book ChapterDOI
TL;DR: How the still partial understanding of the FtsZ-based cell division process has been progressed is described by visualising near-atomic structures of Z-rings and complexes that control Z-ring positioning in cells, most notably the MinCDE and Noc systems that act by negatively regulating FTSZ filaments.
Abstract: In bacteria and archaea, the most widespread cell division system is based on the tubulin homologue FtsZ protein, whose filaments form the cytokinetic Z-ring. FtsZ filaments are tethered to the membrane by anchors such as FtsA and SepF and are regulated by accessory proteins. One such set of proteins is responsible for Z-ring’s spatiotemporal regulation, essential for the production of two equal-sized daughter cells. Here, we describe how our still partial understanding of the FtsZ-based cell division process has been progressed by visualising near-atomic structures of Z-rings and complexes that control Z-ring positioning in cells, most notably the MinCDE and Noc systems that act by negatively regulating FtsZ filaments. We summarise available data and how they inform mechanistic models for the cell division process.

Book ChapterDOI
TL;DR: This chapter will highlight recent advances in the understanding of the structure-function relationships, the overall organisation and the transport and assembly of PDC in particular, focussing on both native and recombinant forms of the complex and their individual components or constituent domains.
Abstract: The family of 2-oxoacid dehydrogenase complexes (2-OADC), typified by the pyruvate dehydrogenase multi-enzyme complex (PDC) as its most prominent member, are massive molecular machines (Mr, 4–10 million) controlling key steps in glucose homeostasis (PDC), citric acid cycle flux (OGDC, 2-oxoglutarate dehydrogenase) and the metabolism of the branched-chain amino acids, leucine, isoleucine and valine (BCOADC, branched-chain 2-OADC). These highly organised mitochondrial arrays, composed of multiple copies of three separate enzymes, have been widely studied as paradigms for the analysis of enzyme cooperativity, substrate channelling, protein-protein interactions and the regulation of activity by phosphorylation. This chapter will highlight recent advances in our understanding of the structure-function relationships, the overall organisation and the transport and assembly of PDC in particular, focussing on both native and recombinant forms of the complex and their individual components or constituent domains. Biophysical approaches, including X-ray crystallography (MX), nuclear magnetic resonance spectroscopy (NMR), cryo-EM imaging, analytical ultracentrifugation (AUC) and small angle X-ray and neutron scattering (SAXS and SANS), have all contributed significant new information on PDC subunit organisation, stoichiometry, regulatory mechanisms and mode of assembly. Moreover, the recognition of specific genetic defects linked to PDC deficiency, in combination with the ability to analyse recombinant PDCs housing both novel naturally-occurring and engineered mutations, have all stimulated renewed interest in these classical metabolic assemblies. In addition, the role played by PDC, and its constituent proteins, in certain disease states will be briefly reviewed, focussing on the development of new and exciting areas of medical and immunological research.