scispace - formally typeset
Search or ask a question

Showing papers in "The International Journal of Developmental Biology in 2001"



Journal ArticleDOI
TL;DR: The classical theory of cementum as a dental follicle derived connective tissue that forms subsequent to HERS disintegration is confirmed, as well as the in situ hybridization and immolocalization data.
Abstract: In conclusion, we have reviewed an extensive literature on early cementogenesis and performed a detailed morphological and molecular analysis to illustrate and verify key issues in the current debate about epithelial and mesenchymal contributions to root cementum. We have demonstrated that prior to cementogenesis, Hertwig's epithelial root sheath disintegrates and dental follicle cells penetrate the epithelial layer to invade the root surface. Our studies confirmed that HERS became disrupted or disintegrated prior to cementum deposition. We visualized how mesenchymal cells from the dental follicle penetrated the HERS bilayer and deposited initial cementum, while immediately adjacent epithelial cells were separated from the root surface by a basal lamina and did not secrete any cementum. Human specimen from the Gottlieb collection indicated that HERS was removed from the root surface prior to cementum deposition. Our in situ hybridization and immolocalization data revealed that both amelogenin mRNAs and enamel proteins were restricted to the crown enamel and were absent from the root surface and from the cervical-most ameloblasts adjacent to the root margin. On Western blots, cementum protein extracts did not cross-react with amelogenin antibodies. Our studies in conjunction with our literature review together confirmed the classical theory of cementum as a dental follicle derived connective tissue that forms subsequent to HERS disintegration.

214 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the upstream Wnt antagonists Xwnt5a and Nxfz-8, which inhibit normal morphogenetic movements during Xenopus gastrulation, act independently of the canonical Wnt signaling pathway.
Abstract: The Wnt signaling pathway is increasingly recognized as a highly branched signaling network. Experimental uncoupling of the different branches of this pathway has proven difficult, as many single components are shared downstream by multiple, distinct pathways. In this report, we demonstrate that the upstream Wnt antagonists Xwnt5a and Nxfz-8, which inhibit normal morphogenetic movements during Xenopus gastrulation, act independently of the canonical Wnt signaling pathway. This finding is important, as it highlights the promiscuity of upstream Wnt signaling components and further establishes an important role for non-canonical Wnt signaling in Xenopus morphogenesis.

128 citations


Journal ArticleDOI
TL;DR: It is proposed that a genetic cascade in the AVE, involving HNF3beta, Lim1, Otx2, Smad2 and ActRIB, leads to the production of secreted TGFbeta antagonists that protect the anterior epiblast region from Nodal signalling.
Abstract: Recent genetic and embryological experiments have demonstrated that head formation in the mouse embryo is dependent on signals provided by two organising centers during gastrulation, the anterior visceral endoderm (AVE) and the anterior primitive streak (also called the Early Gastrula Organiser, EGO). However the molecular nature of the signals triggering anterior neural formation from the epiblast is not clearly understood. The analysis of mouse mutants has allowed the identification of some of the molecular players involved in the process of head formation. In this review, we describe different mutant embryos in which impairment of visceral endoderm function leads to similar defects in antero-posterior axis specification. These phenotypes are consistent with a role of the AVE in protecting anterior embryonic regions from signals that promote posterior development. We propose that a genetic cascade in the AVE, involving HNF3beta, Lim1, Otx2, Smad2 and ActRIB, leads to the production of secreted TGFbeta antagonists that protect the anterior epiblast region from Nodal signalling.

116 citations


Journal ArticleDOI
TL;DR: Development of activation protocols that closely imitate the mechanism of activation initiated by the sperm are of special interest to improve the developmental potential of cloned embryos.
Abstract: Events after fertilisation have been carefully studied in the last decades. However, there are still several questions to be clarified in relation to the signalling pathway initiated by the sperm, the identification of proteins or factors involved in the activation of the arrested oocyte, and the inactivation of specific molecules involved in the meiotic arrest. The present state of knowledge in mammalian fertilisation allows the development of activation protocols that closely mimic the events initiated by the sperm according to certain major factors (MPF activity and MAPk activity). These protocols are successfully used for the activation of oocytes after NT giving rise to offspring. Few cloned animals have yet been produced. However, the pregnancy and the survival rates after birth are not significantly different when different activation protocols are compared. This fact argues fora major reason forthe low success in the efficiency of NT. Eventually, factors related to the recipient oocyte, the donor cell or the culture conditions are part of these major problems that the reconstructed embryo has to overcome to develop into a normal offspring. Nonetheless, the development of activation protocols that closely imitate the mechanism of activation initiated by the sperm are of special interest to improve the developmental potential of cloned embryos.

115 citations


Journal ArticleDOI
TL;DR: Recent observations on the roles of estrogen, catecholestrogen, the EGF family of growth factors, leukemia inhibitory factor and cyclooxygenase-2 derived prostaglandins and their interactions in embryo-uterine "cross-talk" during implantation are highlighted.
Abstract: Implantation is a complex developmental process that involves an intimate "cross-talk" between the embryo and uterus. Synchronized development of the embryo to the blastocyst stage and differentiation of the uterus to the receptive state are essential to this process. Successful execution of the events of implantation involves participation of steroid hormones, locally derived growth factors, cytokines, transcription factors and lipid mediators. Using gene-targeted mice and a delayed implantation model, our laboratory has been exploring potential interactions among steroid hormones, growth factors, cytokines and prostaglandins in this process. This review article highlights some of our recent observations on the roles of estrogen, catecholestrogen, the EGF family of growth factors, leukemia inhibitory factor and cyclooxygenase-2 derived prostaglandins and their interactions in embryo-uterine "cross-talk" during implantation.

112 citations


Journal ArticleDOI
TL;DR: Fgf8 appears as the active diffusible molecule for isthmic morphogenetic activity and has been suggested to be the Morphogenetic effector in other inductive activities revealed in other neuroepithelial regions.
Abstract: Distinct neural identities are acquired through progressive restriction of developmental potential under the influence of local environmental signals. Evidence for the localization of such morphogenetic signals at specific locations of the developing neural primordium has suggested the concept of "secondary organizer regions", which regulate the identity and regional polarity of neighboring neuroepithelial areas one step further. In recent years, the most studied secondary organizer has been the isthmic organizer, which is localized at the hind-midbrain transition and controls anterior hindbrain and midbrain regionalization. Otx2 and Gbx2 expression is fundamental for positioning the organizer and for the establishment of molecular interactions that induce Fgf8 expression and then, stabilize the autoregulative loop of En1, Wnt1 and Pax2 expression. Temporospatial patterns of such gene expressions are necessary for the correct development of the organizer which, by a planar mechanism of induction, controls the normal development of the rostral hindbrain from r2 to the midbrain-diencephalic boundary. Fgf8 appears as the active diffusible molecule for isthmic morphogenetic activity and has been suggested to be the morphogenetic effector in other inductive activities revealed in other neuroepithelial regions.

109 citations


Journal ArticleDOI
TL;DR: Three members of the vertebrate Distal-less gene family, Dlx3, 5 and 6, are transcribed in early gastrula embryos of Xenopus laevis, suggesting that BMP signal attenuation could be the primary factor in determining these different patterns in the Gastrula ectoderm.
Abstract: Three members of the vertebrate Distal-less gene family, Dlx3, 5 and 6, are transcribed in early gastrula embryos of Xenopus laevis. This expression is confined to ectoderm and is excluded from the presumptive neural plate region. Expression of all three genes is dependent upon BMP signaling, with significant differences in how the three genes respond to the BMP antagonist chordin. This correlates with the different expression domain boundaries in vivo for Dlx3 compared to Dlx5 and 6, suggesting that BMP signal attenuation could be the primary factor in determining these different patterns in the gastrula ectoderm.

99 citations


Journal ArticleDOI
Yoshiki Sasai1
TL;DR: Recent molecular studies on neural determination, focusing mainly on Sox factors are reviewed, and the possible conservation of regulatory factors in neural differentiation, comparing Xenopus and Drosophila counterparts are discussed.
Abstract: Neural differentiation in amphibian embryos is initiated by the neural inducers emanating from the Spemann-Mangold organizer. The fate of uncommitted ectoderm is determined by graded BMP activity along the dorsal-ventral axis. Several transcriptional regulators acting in early neural differentiation have been identified, including Sox, Zic, Pou, HLH and Fox factors. In this paper, I review recent molecular studies on neural determination, focusing mainly on Sox factors. I also discuss the possible conservation of regulatory factors in neural differentiation, comparing Xenopus and Drosophila counterparts.

85 citations


Journal ArticleDOI
TL;DR: It is reported that Fap-/- lacZ mice express beta-Galactosidase at regions of active tissue remodeling during embryogenesis including somites and perichondrial mesenchyme from cartilage primordia.
Abstract: Human Fibroblast Activation Protein (FAP), a member of the serine prolyl oligopeptidase family, is a type II cell surface glycoprotein that acts as a dual-specificity dipeptidyl-peptidase (DPP) and collagenase in vitro. Its restricted expression pattern in embryonic mesenchyme, in wound healing and in reactive stromal fibroblasts of epithelial cancers, has suggested a role for the FAP protease in extracellular matrix degradation or growth factor activation in sites of tissue remodeling. The FAP homologue in Xenopus laevis has been reported to be induced in the thyroid hormone-induced tail resorption program during tadpole metamorphosis supporting a role for FAP in tissue remodeling processes during embryonic development. However, Fap-deficient mice show no overt developmental defects and are viable. To study the expression of FAP during mouse embryogenesis, a second Fap-deficient mouse strain expressing beta-Galactosidase under the control of the Fap promoter was generated by homologous recombination (Fap-/- lacZ mice). FAP deficiency was confirmed by the absence of FAP-specific dipeptidyl-peptidase activity in detergent-soluble extracts isolated from 17.5 d.p.c. Fap-/- lacZ embryos. We report that Fap-/- lacZ mice express beta-Galactosidase at regions of active tissue remodeling during embryogenesis including somites and perichondrial mesenchyme from cartilage primordia.

81 citations


Journal ArticleDOI
TL;DR: A model that allows axes formation by a chain of reactions based on local self-enhancement and long-range inhibition ensures that the intermediary patterns emerge in the correct sequence and have the correct spatial relation to each other is proposed.
Abstract: It is a widely held view that axis formation is based essentially on pre-localized determinants However, the robustness of early development, the pattern regulation observed after experimental interferences and the existence of systems that don't require maternal determinants suggest that self-regulating pattern forming systems are also involved A model is proposed that allows axes formation by a chain of reactions based on local self-enhancement and long-range inhibition Their appropriate linkage ensures that the intermediary patterns emerge in the correct sequence and have the correct spatial relation to each other Specifically, the model comprises the following events: the generation of a pole by a pattern-forming process, the formation of a second organizer eccentric to the pole (eg the Nieuwkoop center), the ecto-meso-endo subdivision, the generation of the Spemann-Mangold organizer with its anterior-posterior subdivision under the influence of the Nieuwkoop center, the conversion of the Spemann-Mangold organizer (a hot spot) into the notochord (a hot stripe), and the marking of the left side of the organism by a patterning reaction influenced by the midline The pattern forming reactions do not depend on but can make use of maternally pre-localized determinants or asymmetries Comparison with known genes and molecules reveals that many of the expected ingredients are present Computer simulations show that the model accounts for many regulatory features reported in the literature The computer simulations are available in an animated form at

Journal ArticleDOI
TL;DR: The combination of genetic, molecular and embryological approaches in zebrafish has provided a framework to understand the mechanisms underlying organizer development.
Abstract: Systematic genetic screens in zebrafish have led to the discovery of mutations that affect organizer function and development. The molecular isolation and phenotypic analysis of the affected genes have revealed that TGF-beta signals of the Nodal family play a key role in organizer formation. The activity of the Nodal signals Cyclops and Squint is regulated extracellularly by the EGF-CFC cofactor One-eyed Pinhead and by antagonists belonging to the Lefty family of TGF-beta molecules. In the absence of Nodal signaling, the fate of cells in the organizer is transformed from dorsal mesoderm to neural ectoderm. Differential Nodal signaling also patterns the organizer along the anterior-posterior axis, with high levels required for anterior cell fates and lower levels for posterior fates. In addition, Nodal signaling cooperates with the homeodomain transcription factor Bozozok in organizer formation and neural patterning. The combination of genetic, molecular and embryological approaches in zebrafish has thus provided a framework to understand the mechanisms underlying organizer development.

Journal ArticleDOI
TL;DR: This introduction retraces some of the steps by which Spemann arrived at the organizer concept, including the problem of amphibian lens induction including the so-called lens controversy, the early constriction experiments creating double headed malformations, and the homeo- and heteroplastic transplantations during gastrula stages of the newt.
Abstract: The "organizer paper", published by Hans Spemann and Hilde Mangold in 1924, initiated a new epoch in developmental biology. Also it marked the climax of Spemann's life-long research which began at the end of the nineteenth century. This introduction retraces some of the steps by which Spemann arrived at the organizer concept: The problem of amphibian lens induction including the so-called lens controversy, the early constriction experiments creating double headed malformations, and the homeo- and heteroplastic transplantations during gastrula stages of the newt. Furthermore this paper will--based on historical documents--repudiate some objections raised to the contribution of Spemann and Hilde Mangold to the discovery and interpretation of the organizer effect.

Journal ArticleDOI
TL;DR: The discovery that some well-known growth factors have inducing activity in embryogenesis has accelerated the understanding of embryonic induction and the potential use of in vitro induction systems to further the authors' understanding of vertebrate organogenesis and body patterning will be discussed.
Abstract: The discovery that some well-known growth factors have inducing activity in embryogenesis has accelerated our understanding of embryonic induction. Relevant receptors, signal transduction pathways and patterns of gene expression have been characterized over the past decade. Amphibian embryos have provided an excellent model for analysis of embryonic induction because they are easily surgically manipulated and cultured in vitro, and with the addition of treatment with various inducing factors we have been able to control organogenesis and body patterning during early development in vitro. Activin A, a TGF-beta family protein, has a potent mesoderm-inducing activity on the isolated ectoderm called the animal cap. Activin induces animal caps to differentiate into various mesodermal and endodermal tissues, including beating hearts, in a dose-dependent fashion. Activin, in combination with retinoic acid, also induces the formation of the pronephros, a primitive embryonic kidney. The in vitro induced kidney was confirmed to function in vivo in a transplantation experiment. Furthermore, the activin-induced animal caps organize heads or trunk-and-tails in exactly the same manner as the organizer. The potential use of in vitro induction systems to further our understanding of vertebrate organogenesis and body patterning will be discussed.

Journal ArticleDOI
TL;DR: Evidence is summarized in this article that the organizer does fulfill its title with regard to pattern formation: it adds greatly to embryonic organization by providing information about time, place, scale, and orientation for development by nearby members of the large multipotent competence groups surrounding the organizer.
Abstract: The discovery of the organizer by Spemann and Mangold in 1924 raised two kinds of questions: those about the means of patterning the chordate body axis and those about the mechanisms of cell determination by induction. Some researchers, stressing the second, have suggested over the years that the organizer is poorly named and doesn't really organize because inducers act permissively, because they are not unique to the organizer, and because multipotent responsive cells develop complex local differentiations under artificial conditions. Furthermore, with the discovery of meso-endoderm induction in 1969, the possibility arose that this earlier induction generates as much organization as, or more than, does the organizer itself. Evidence is summarized in this article that the organizer does fulfill its title with regard to pattern formation: it adds greatly to embryonic organization by providing information about time, place, scale, and orientation for development by nearby members of the large multipotent competence groups surrounding the organizer. Embryos having smaller or larger organizers due to experimental intervention develop defective axial organization. Without an organizer the embryo develops no body axis and none of the four chordate characters: the notochord, gill slits, dorsal hollow nerve chord, and post-anal tail. For normal axis formation, the organizer's tripartite organization is needed. Each part differs in inducers, morphogenesis, and self-differentiation. The organizer is a trait of development of all members of the chordate phylum. In comparison to hemichordates, which constitute a phylum with some similarities to chordates, the chordamesoderm part is unique to the chordate organizer (the trunk-tail organizer). Its convergent extension displaces the gastrula posterior pole from alignment with the animal-vegetal axis and generates a new anteroposterior axis orthogonal to this old one. Once it has extended to full length, its signaling modifies the dorsoventral dimension. This addition to the organizer is seen as a major event in chordate evolution, bringing body organization beyond that achieved by oocyte organization and meso-endoderm induction in other groups.

Journal ArticleDOI
TL;DR: The zebrafish bozozok (boz) gene encoding a homeodomain protein (also named Dharma/Nieuwkoid) is required during blastula stages for the formation of a complete Spemann-Mangold gastrula organizer and subsequent development of axial mesoderm and anterior neural structures as mentioned in this paper.
Abstract: The zebrafish bozozok (boz) gene encoding a homeodomain protein (also named Dharma/Nieuwkoid) is required during blastula stages for the formation of a complete Spemann-Mangold gastrula organizer and subsequent development of axial mesoderm and anterior neural structures. Expression of bozin the dorsal yolk syncytial layer (YSL) and overlying marginal blastomeres is activated by beta-catenin. Bozozok itself acts as a transcriptional repressor, and promotes organizer formation by directly inhibiting expression of the bmp2b (swirl) gene and by negatively regulating Wnt signaling by an unknown mechanism. boz cooperates with the Nodal-related secreted factors, Cyclops and Squint, in organizer formation. The incomplete organizer in boz mutants is deficient in expression of a number of factors such as Chordin that antagonize Bone morphogenetic proteins (Bmps), and Dickkopf 1, a Wnt antagonist. Conversely, the dorsal blastoderm of boz mutants exhibits ectopic expression of genes normally excluded from the dorsal midline such as wnt8 or tbx6. boz specifies the formation of anterior neuroectoderm by regulating Bmp and Wnt pathways in a fashion consistent with Nieuwkoop's two-step neural patterning model. boz promotes neural induction by limiting the anti-neuralizing activity of Bmp morphogens. In addition, by negative regulation of Wnt signaling, boz limits posteriorization of neuroectoderm. bozozok chordino double mutants exhibit a synergistic loss of head and trunk. This synthetic phenotype is due to dramatically increased Bmp signaling and consequent massive accumulation of cells in the tailbud at the expense of dorso-anterior structures. Therefore, boz and din act in overlapping pathways that provide the main mechanism to limit Bmp signaling in the zebrafish gastrula and allow for head and trunk development. Notably, Bozozok appears to function by repressing transcription of target genes such as swr (bmp2b) gene, and as such is the earliest acting repressor that the nascent dorsal axis is using to antagonize ventral influences.

Journal ArticleDOI
TL;DR: New evidence is provided that reinforce the existence of an interplay between the cTwist and FGF signalling pathways and the expression of cTwists in the limb mesenchyme is regulated by the AER, FGFs, RA and SHH.
Abstract: We have isolated a chick Twist gene (cTwist) and examined its expression pattern during development by whole mount in situ hybridization. In early embryos, cTwist transcripts are found in the developing somites, lateral plate mesoderm, limb mesenchyme, branchial arches and head mesenchyme. At later stages, cTwist expression is found in the sclerotome and dermatome, limb bud mesenchyme, interdigital regions, and distal mesenchyme of the maxillary and mandibular processes. In the developing feathers, cTwist is expressed in the mesenchyme of the buds and becomes restricted to the proximal region of the feather filaments. Additionally, we report that the expression of cTwistin the limb mesenchyme is regulated by the AER, FGFs, RA and SHH. The FGFs secreted by the AER seem to have a critical role in maintaining cTwist expression. SHH is also able to maintain cTwist expression but only in the presence of the AER. Overall, our results provide new evidence that reinforce the existence of an interplay between the cTwist and FGF signalling pathways.

Journal ArticleDOI
TL;DR: Dickkopf1 (dkk1) encodes a secreted effector expressed in head organizing centers of Xenopus, mouse and zebrafish that acts as a Wnt inhibitor and is able together with BMP inhibitors to induce the formation of ectopic embryonic heads in Xenopus.
Abstract: Work in amphibians indicates that inhibition of Wnt and BMP signals is essential for head development and that head induction by the Spemann-Mangold organizer may be mediated by secreted Wnt antagonists. Wnts are potent posteriorizing factors and antagonize the Spemann-Mangold organizer. Dickkopf1 (dkk1) encodes a secreted effector expressed in head organizing centers of Xenopus, mouse and zebrafish. It acts as a Wnt inhibitor and is able together with BMP inhibitors to induce the formation of ectopic embryonic heads in Xenopus. It anteriorizes both mesendoderm and neuroectoderm, promoting prechordal plate and forebrain fates. Injection of inhibitory antibodies leads to microcephaly and cyclopia. Dkk1 thus is an essential mediator of the vertebrate head organizer.

Journal ArticleDOI
TL;DR: The results suggest that neither vesicular transcytosis nor other active processes contribute to a significant extent to the formation of the morphogen gradient the authors observe, and conclude that, in the model system used here, a functional Morphogen gradient can be formed within a few hours by a mechanism of passive diffusion.
Abstract: In early development much of the cellular diversity and pattern formation of the embryo is believed to be set up by morphogens. However, for many morphogens, including members of the TGF-beta superfamily, the mechanism(s) by which they reach distant cells is unknown. We have used immunofluorescence to detect, at single cell resolution, a morphogen gradient formed across vertebrate tissue. The TGF-beta ligand is distributed in a gradient visible up to 7 cell diameters (about 150-200 microm) from its source, and is detectable only in the extracellular space. This morphogen gradient is functional, since we demonstrate activation of a high response gene (Xeomes) and a low-response gene (Xbra) at different distances from the TGF-beta source. Expression of the high affinity type II TGF-beta receptor is necessary for detection of the gradient, but the shape of the gradient formed only depends in part on the spatial variation in the amount of receptor. Finally, we demonstrate that the molecular processes that participate in forming this functional morphogen gradient are temperature independent, since the gradient forms to a similar extent whether the cells are maintained at 4 degrees C or 23 degrees C. In contrast, TGF-beta1 internalisation by cells of the Xenopus embryo is a temperature-dependent process. Our results thus suggest that neither vesicular transcytosis nor other active processes contribute to a significant extent to the formation of the morphogen gradient we observe. We conclude that, in the model system used here, a functional morphogen gradient can be formed within a few hours by a mechanism of passive diffusion.

Journal ArticleDOI
TL;DR: It is suggested that disturbance in the specification of an Fgf8 signalling centre in the anterior neural ridge may account for the anterior defects observed in the Hex and Hesx1 mutant mice.
Abstract: An increasing amount of evidence suggests that in mouse there are two signalling centres required for the formation of a complete neural axis: the anterior visceral endoderm (AVE), and the node and its derivatives. Embryological and genetic studies suggest that the AVE has a head-inducing activity. In contrast, the node appears to act first as a head inducer in synergy with the AVE initiating anterior neural patterning at early stages of mouse development, and later, node derivatives are necessary for maintenance and embellishment of anterior neural character. Hex and Hesx1 are homeobox genes that are expressed in relevant tissues involved in anterior patterning. The analysis of the Hex and Hesx1 mutant mice has revealed that the lack of these genes has little or no effect on the early steps of anterior neural induction. However, both genes are required subsequently for the proper expansion of the forebrain region. We suggest that disturbance in the specification of an Fgf8 signalling centre in the anterior neural ridge may account for the anterior defects observed in these mutants.

Journal ArticleDOI
TL;DR: The results demonstrate that the ES cell test, EST may be suitable to detect inhibitory effects of test compounds especially on cardiac differentiation, whereas effects on neuronal cells would not be detected, and proposes that morphological analyses of cardiac differentiation alone are insufficient to detect embryotoxic effects.
Abstract: The effects of lithium chloride (LiCl) on differentiation of mouse embryonic stem (ES) cells were investigated in order to evaluate the ES cell test (EST) used in a European Union validation study for screening of embryotoxic agents in vitro. We show that LiCl inhibited concentration-dependently the differentiation of ES cells into cardiac and myogenic cells. Whereas the inhibition of cardiac differentiation by high concentrations of LiCl was obvious at day 5 + 5, decreased skeletal muscle cell differentiation was observed only at day 5 + 8. Semi-quantitative RT-PCR analyses revealed significantly lower levels of mRNA encoding cardiac-specific alpha-myosin heavy chain and skeletal muscle-specific myoD. By morphological investigation, an influence of lithium on neuronal differentiation was not evident. However, mRNA levels of genes encoding synaptophysin and the 160 kDa neurofilament protein were increased by high LiCl concentrations, whereas mRNA levels of mash-1 and Engrailed-1 were decreased, suggesting a specific influence of lithium on neuronal differentiation. Furthermore, LiCl treatment resulted in a slight, but non-significant increase of beta-catenin levels in ES cell-derived embryoid bodies. Our results demonstrate that the ES cell test, EST may be suitable to detect inhibitory effects of test compounds especially on cardiac differentiation, whereas effects on neuronal cells would not be detected. Therefore, we propose that morphological analyses of cardiac differentiation alone are insufficient to detect embryotoxic effects. The assay of other cell lineages at different developmental stages, and expression analyses of tissue-specific genes should also be employed.

Journal ArticleDOI
TL;DR: A two-dimensional dispersed culture system is developed in which transition from the mitotic PGCs into the leptotene stage of the first meiotic division is examined, finding entry into meiosis seems to be programmed in P GCs before reaching the genital ridges and unless it is inhibited by putative signals from the testicular somatic cells.
Abstract: Mouse primordial germ cells (PGCs) migrate from the base of the allantois to the genital ridge. They proliferate both during migration and after their arrival, until initiation of the sex-differentiation of fetal gonads. Then, PGCs enter into the prophase of the first meiotic division in the ovary to become oocytes, while those in the testis become mitotically arrested to become prospermatogonia. Growth regulation of mouse PGCs has been studied by culturing them on feeder cells. They show a limited period of proliferation in vitro and go into growth arrest, which is in good correlation with their developmental changes in vivo. However, in the presence of multiple growth signals, PGCs can restart rapid proliferation and transform into pluripotent embryonic germ (EG) cells. Observation of ectopic germ cells and studies of reaggregate cultures suggested that both male and female PGCs show cell-autonomous entry into meiosis and differentiation into oocytes if they were set apart from the male gonadal environments. Recently, we developed a two-dimensional dispersed culture system in which we can examine transition from the mitotic PGCs into the leptotene stage of the first meiotic division. Such entry into meiosis seems to be programmed in PGCs before reaching the genital ridges and unless it is inhibited by putative signals from the testicular somatic cells.

Journal ArticleDOI
TL;DR: The study of the BMP-binding repeats of Chordin may provide a new paradigm for how cell-cell signaling is regulated in the extracellular space not only in embryos, but also in adult tissues.
Abstract: We review how studies on the first Spemann-Mangold organizer marker, the homeobox gene goosecoid, led to the discovery of secreted factors that pattern the vertebrate embryo. Microinjection of goosecoid mRNA formed secondary axes and recruited neighboring cells. These non-cell autonomous effects are mediated in part by the expression of secreted factors such as chordin, cerberus and Frzb-1. Unexpectedly, many of the molecules secreted by the Spemann-Mangold organizer turned out to be antagonists that bind growth factors in the extracellular space and prevent them from binding to their receptors. The case of chordin is reviewed in detail, for this molecule has provided biochemical insights into how patterning by Spemann's organizer can be regulated by diffusion and proteolytic control. The study of the BMP-binding repeats of Chordin, which are present in many extracellular proteins, may provide a new paradigm for how cell-cell signaling is regulated in the extracellular space not only in embryos, but also in adult tissues.

Journal ArticleDOI
TL;DR: The ability of a human dedifferentiated PEC line to differentiate into lens is analyzed and it is found that this cell line can indeed be induced to synthesize crystallin and morphologically differentiate to three-dimensional structures resembling lentoids under controlled treatment in vitro.
Abstract: Lens regeneration occurs in some urodeles and fish throughout their adult life. Such an event is possible by the transdifferentiation of the pigment epithelial cells (PECs) from the dorsal iris. Studies of this event at the cellular level have been facilitated owing to the ability of PECs to become lens cells even when they are placed in culture, outside of the eye. In fact, PECs possess the capacity for transdifferentiation regardless of the origin of species or age. However, studies at the molecular level are still hindered by the intrinsic problems of primary cultures, namely storage, reproducibility and genetic manipulation. In an attempt to establish an ideal model system for lens transdifferentiation, we have analyzed the ability of a human dedifferentiated PEC line to differentiate into lens. We have found that this cell line can indeed be induced to synthesize crystallin and morphologically differentiate to three-dimensional structures resembling lentoids under controlled treatment in vitro. Gene expression studies also provided important insights into the role of key genes. This human cell line can be used for detailed genetic studies in order to identify the key factors involved in lens transdifferentiation from PECs.

Journal ArticleDOI
TL;DR: This experimental procedure is capable of selecting a cell population from bone marrow which, in the presence of rhOP-1, achieves skeletogenic potential under in vitro as well as in vivo environments.
Abstract: The differentiation and maturation of osteoprogenitor cells into osteoblasts are processes which are thought to be modulated by transforming growth factors-beta (TGF-beta) as well as by bone morphogenetic proteins (BMPs). Osteogenic protein-1 (OP-1, also known as BMP-7) is a member of the BMP family, and it is considered to have important regulatory roles in skeletal embryogenesis and bone healing. Rat bone marrow cells were cultured in vitro in a collagen-gel medium containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of 40 ng/ml recombinant human OP-1 (rhOP-1). Under these conditions, survival of the bone marrow cell population was dependent on the presence of rhOP-1. Subsequently, the selected cells were cultured-for 6 days in medium containing 40 ng rhOP-1 and 10% FBS. During the last 2 days, dexamethasone (10(-8) M) and beta-glycerophosphate (2 mM) were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels, colony number and size were determined. Chondro-osteogenic differentiation in vitro was evaluated in terms of the expression of alkaline phosphatase, the production of osteocalcin and the formation of mineralized matrix. After culturing in vitro, cells were placed inside diffusion chambers or inactivated demineralized bone matrix (DBM) cylinders and implanted subdermically into the backs of old rats for 28 days. Biochemical, histological and immunocytochemical analyses provided evidence of cartilage and osteoid tissue inside the diffusion chambers, whereas bone was also observed inside the DBM implants. In conclusion, this experimental procedure is capable of selecting a cell population from bone marrow which, in the presence of rhOP-1, achieves skeletogenic potential under in vitro as well as in vivo environments.

Journal ArticleDOI
TL;DR: It is reported that membrane vesicles prepared from acrosome-intact sperm contain sp56, and incubation of intact sperm with the antibody directed against sp56 inhibits binding of the sperm to eggs.
Abstract: Purified mouse sperm receptor, a zona pellucida glycoprotein called mZP3, binds to plasma membrane overlying acrosome-intact sperm heads (P.M. Wassarman, 1999, Cell 96, 175-183). Some evidence suggests that mZP3 binds to sp56, a protein reported to be associated peripherally with the plasma membrane of acrosome-intact sperm heads (J.D. Bleil and P.M. Wassarman, 1990, Proc. Natl. Acad. Sci., USA 87, 7215-7219; A. Cheng et al., 1994, J. Cell Biol. 125, 867-878). Here, we report that membrane vesicles prepared from acrosome-intact sperm contain sp56. When these vesicles are incubated with eggs they inhibit binding of sperm to eggs in vitro (ID50 approximately 50-100 microg protein/ml). On the other hand, a monoclonal antibody directed against sp56 relieves the inhibition of binding of sperm to eggs by membrane vesicles. As expected, incubation of intact sperm with the antibody directed against sp56 inhibits binding of the sperm to eggs. Results of immunoprecipitation of sperm extracts incubated with mZP3, by either a polyclonal antibody directed against mZP3 or a monoclonal antibody directed against sp56, suggest that mZP3 is specifically associated with sp56. Results of laser scanning confocal microscopy of fixed sperm probed with antibodies directed against either sp56 or a approximately 155 kDa acrosomal protein, suggest that the two proteins are present in the acrosome, but with different distributions. Furthermore, confocal images of sperm, fixed after exposure to purified mZP3 and probed with antibodies against mZP3 and sp56, reveal overlap between mZP3 and sp56 at the surface of the sperm head. The possible implications of these results are discussed in the context of mammalian fertilization.

Journal ArticleDOI
TL;DR: The observations strongly suggest that the majority of foetuses/animals produced according to the experimental system are 'pure' diploids rather than 2n/4n chimaeras, and that the described method can be used in future to produce twins, triplets and quadruplets in the mouse.
Abstract: The aim of this study was to obtain mice, hopefully identical multiplets, from single diploid blastomeres isolated at the 4-cell stage, or from pairs of sister blastomeres isolated at the 8-cell stage. To this end isolated blastomeres were aggregated with one or two tetraploid carrier embryos produced by electrofusion of 2-cell embryos. Diploid embryos were albino and homozygous for the "a" allele of glucose-phosphate isomerase (GPI-1a1a) and tetraploid embryos were pigmented and GPI-1b1b. The aggregates were cultured in vitro up to the blastocyst stage. Each quartet (occasionally triplet or doublet) of chimaeric blastocysts was transplanted to the oviduct of a separate pseudopregnant recipient. Altogether 62 blastocysts were transplanted to 17 recipients. Eight full-term foetuses (two singletons and three pairs of twins) were rescued by Caesarian section on day 19, 20 or 21 of pregnancy. Three young (one singleton and twins) were successfully reared by foster mothers and proved to be normal and fertile females. All foetuses and animals were albino. In five individuals only the 1-A form of GPI (characteristic for 2n blastomere) was found. In one adult female traces of the 1-B form of GPI (characteristic for 4n carrier blastomeres) were detected in the heart and the lungs while 4 other organs contained only the 1-A form. These observations strongly suggest that the majority of foetuses/animals produced according to our experimental system are 'pure' diploids rather than 2n/4n chimaeras, and that the described method can be used in future to produce twins, triplets and quadruplets in the mouse. Our study confirms earlier work by Kelly (1975, 1977) that 'quarter' blastomeres of the mouse are still totipotent.

Journal ArticleDOI
TL;DR: Findings suggest that although some cells with organizer activity may be present in the mutant embryo, they are not properly localised and fail to contribute to the axial mesoderm of the head.
Abstract: The orientation of the anterior-posterior (A-P) axis was examined in gastrula-stage Hnf3beta, Otx2 and Lim1 null mutant embryos that display defective axis development. In situ hybridization analysis of the expression pattern of genes associated with the posterior germ layer tissues and the primitive streak (T, Wnt3 and Fgf8) and anterior endoderm (Cer1 and Sox17) revealed that the A-P axis of mutant embryos remains aligned with the proximo-distal plane of the gastrula. Further analysis revealed that cells which express Chrd activity are either absent in Hnf3beta mutant embryos or localised in heterotopic sites in Lim1 and Otx2 null mutants. Lim1-expressing cells are present in the Hnf3beta mutant embryo albeit in heterotopic sites. In all three mutants, Gsc-expressing cells are missing from the anterior mesendoderm. These findings suggest that although some cells with organizer activity may be present in the mutant embryo, they are not properly localised and fail to contribute to the axial mesoderm of the head. By contrast, in T/T mutant embryos that display normal head fold development, the expression domains of organizer, primitive streak and anterior endoderm genes are regionalised correctly in the gastrula.

Journal ArticleDOI
TL;DR: The germ line in the mouse is unlikely to be derived from a predetermined progenitor population, but may be specified as a result of tissue interactions that take place in the proximal epiblast of the mouse gastrula.
Abstract: Analysis of the lineage potency of epiblast cells of the early-streak stage mouse embryo reveals that the developmental fate of the cells is determined by their position in the germ layer. Epiblast cells that are fated to become neuroectoderm can give rise to primordial germ cells (PGCs) and other types of somatic cells when they were transplanted to the proximal region of the epiblast. On the contrary, proximal epiblast cells transplanted to the distal region of the embryo do not form PGCs. Therefore, the germ line in the mouse is unlikely to be derived from a predetermined progenitor population, but may be specified as a result of tissue interactions that take place in the proximal epiblast of the mouse gastrula. The initial phase of the establishment of the PGC population requires, in addition to BMP activity emanating from the extraembryonic ectoderm, normal Lim1 and Hnf3beta activity in the germ layers. The entire PGC population is derived from a finite number of progenitor cells and there is no further cellular recruitment to the germ line after gastrulation. The XX PGCs undergo X-inactivation at the onset of migration from the gut endoderm and re-activate the silenced X-chromosome when they enter the urogenital ridge. Germ cells that are localised ectopically in extragonadal sites do not re-activate the X-chromosome, even when nearly all germ cells in the fetal ovary have restored full activity of both X-chromosomes. XXSxr germ cells can re-activate the X-chromosome in the sex-reversed testis, suggesting that the regulation of X-chromosome activity is independent of ovarian morphogenesis.

Journal ArticleDOI
TL;DR: Comparing the mechanisms that initially establish the organiser in the blastula with those that maintain it during gastrulation in different vertebrate classes are compared, and it is argued that similar molecular mechanisms may be involved in the two processes.
Abstract: The organizer is established at the blastula stage of development, under the influence of a special region of cells known as the Nieuwkoop center in amphibians, where Vg1/activin-like signals overlap with activity of the Wnt-pathway. Despite differences in their mode of early development, a similar region can be identified in other vertebrates. It has widely been assumed that once the organizer property is assigned to cells at this early stage, it is fixed so that by the gastrula stage, no new cells acquire organizer properties. However, when the organizer is ablated, it can regenerate for a limited period during gastrulation, a process regulated by both positive and negative signals emanating from various domains in the embryo. Here we compare the mechanisms that initially establish the organiser in the blastula with those that maintain it during gastrulation in different vertebrate classes, and argue that similar molecular mechanisms may be involved in the two processes. We also suggest that these mechanisms are required to ensure the appropriate location of the organizer property in the gastrula, where cells are continuously moving.