scispace - formally typeset
Search or ask a question

Showing papers in "The Journal of Neuroscience in 1992"


Journal ArticleDOI
TL;DR: The ability of psychophysical observers and single cortical neurons to discriminate weak motion signals in a stochastic visual display is compared and psychophysical decisions in this task are likely to be based upon a relatively small number of neural signals.
Abstract: We compared the ability of psychophysical observers and single cortical neurons to discriminate weak motion signals in a stochastic visual display. All data were obtained from rhesus monkeys trained to perform a direction discrimination task near psychophysical threshold. The conditions for such a comparison were ideal in that both psychophysical and physiological data were obtained in the same animals, on the same sets of trials, and using the same visual display. In addition, the psychophysical task was tailored in each experiment to the physiological properties of the neuron under study; the visual display was matched to each neuron's preference for size, speed, and direction of motion. Under these conditions, the sensitivity of most MT neurons was very similar to the psychophysical sensitivity of the animal observers. In fact, the responses of single neurons typically provided a satisfactory account of both absolute psychophysical threshold and the shape of the psychometric function relating performance to the strength of the motion signal. Thus, psychophysical decisions in our task are likely to be based upon a relatively small number of neural signals. These signals could be carried by a small number of neurons if the responses of the pooled neurons are statistically independent. Alternatively, the signals may be carried by a much larger pool of neurons if their responses are partially intercorrelated.

1,939 citations


Journal ArticleDOI
TL;DR: The hypothesis that beta-amyloid can destabilize neuronal calcium regulation and render neurons more vulnerable to environmental stimuli that elevate intracellular calcium levels is tested.
Abstract: In Alzheimer's disease (AD), abnormal accumulations of beta-amyloid are present in the brain and degenerating neurons exhibit cytoskeletal aberrations (neurofibrillary tangles). Roles for beta-amyloid in the neuronal degeneration of AD have been suggested based on recent data obtained in rodent studies demonstrating neurotoxic actions of beta- amyloid. However, the cellular mechanism of action of beta-amyloid is unknown, and there is no direct information concerning the biological activity of beta-amyloid in human neurons. We now report on experiments in human cerebral cortical cell cultures that tested the hypothesis that beta-amyloid can destabilize neuronal calcium regulation and render neurons more vulnerable to environmental stimuli that elevate intracellular calcium levels. Synthetic beta-amyloid peptides (beta APs) corresponding to amino acids 1–38 or 25–35 of the beta-amyloid protein enhanced glutamate neurotoxicity in cortical cultures, while a peptide with a scrambled sequence was without effect. beta APs alone had no effect on neuronal survival during a 4 d exposure period. beta APs enhanced both kainate and NMDA neurotoxicity, indicating that the effect was not specific for a particular subtype of glutamate receptor. The effects of beta APs on excitatory amino acid (EAA)-induced neuronal degeneration were concentration dependent and required prolonged (days) exposures. The beta APs also rendered neurons more vulnerable to calcium ionophore neurotoxicity, indicating that beta APs compromised the ability of the neurons to reduce intracellular calcium levels to normal limits. Direct measurements of intracellular calcium levels demonstrated that beta APs elevated rest levels of calcium and enhanced calcium responses to EAAs and calcium ionophore. The neurotoxicity caused by EAAs and potentiated by beta APs was dependent upon calcium influx since it did not occur in calcium-deficient culture medium. Finally, the beta APs made neurons more vulnerable to neurofibrillary tangle-like antigenic changes induced by EAAs or calcium ionophore (i.e., increased staining with tau and ubiquitin antibodies). Taken together, these data suggest that beta-amyloid destabilizes neuronal calcium homeostasis and thereby renders neurons more vulnerable to environmental insults.

1,647 citations


Journal ArticleDOI
TL;DR: It is suggested that EGF and/or TGF alpha may act on a multipotent progenitor cell in the striatum to generate both neurons and astrocytes.
Abstract: The mitogenic actions of epidermal growth factor (EGF) were examined in low-density, dissociated cultures of embryonic day 14 mouse striatal primordia, under serum-free defined conditions. EGF induced the proliferation of single progenitor cells that began to divide between 5 and 7 d in vitro, and after 13 d in vitro had formed a cluster of undifferentiated cells that expressed nestin, an intermediate filament present in neuroepithelial stem cells. In the continued presence of EGF, cells migrated from the proliferating core and differentiated into neurons and astrocytes. The actions of EGF were mimicked by the homolog transforming growth factor alpha (TGF alpha), but not by NGF, basic fibroblast growth factor, platelet-derived growth factor, or TGF beta. In EGF-generated cultures, cells with neuronal morphology contained immunoreactivity for GABA, substance P, and methionine-enkephalin, three neurotransmitters of the adult striatum. Amplification of embryonic day 14 striatal mRNA by using reverse transcription/PCR revealed mRNAs for EGF, TGF alpha, and the EGF receptor. These findings suggest that EGF and/or TGF alpha may act on a multipotent progenitor cell in the striatum to generate both neurons and astrocytes.

1,598 citations


Journal ArticleDOI
TL;DR: It is concluded that hyperpolarization of the interneurons by opioids reduces the spontaneous GABA-mediated synaptic input to the dopamine cells in vivo, which would be expected to contribute to the positive reinforcement seen with mu-receptor agonists such as morphine and heroin.
Abstract: Increased activity of dopamine-containing neurons in the ventral tegmental area is necessary for the reinforcing effects of opioids and other abused drugs. Intracellular recordings from these cells in slices of rat brain in vitro showed that opioids do not affect the principal (dopamine-containing) neurons but hyperpolarize secondary (GABA-containing) interneurons. Experiments with agonists and antagonists selective for opioid receptor subtypes indicated that the hyperpolarization of secondary cells involved the mu-receptor. Most principal cells showed spontaneous bicuculline-sensitive synaptic potentials when the extracellular potassium concentration was increased from 2.5 to 6.5 or 10.5 mM; these were prevented by TTX and assumed to result from action potentials arising in slightly depolarized local interneurons. The frequency of these synaptic potentials, but not their amplitudes, was reduced by opioids selective for mu-receptors. It is concluded that hyperpolarization of the interneurons by opioids reduces the spontaneous GABA-mediated synaptic input to the dopamine cells. In vivo, this would lead to excitation of the dopamine cells by disinhibition, which would be expected to contribute to the positive reinforcement seen with mu-receptor agonists such as morphine and heroin.

1,576 citations


Journal ArticleDOI
TL;DR: The expression patterns of 13 GABAA receptor subunit encoding genes (alpha 1-alpha 6, beta 1-beta 3, gamma 1-gamma 3, delta) were determined in adult rat brain by in situ hybridization as discussed by the authors.
Abstract: The expression patterns of 13 GABAA receptor subunit encoding genes (alpha 1-alpha 6, beta 1-beta 3, gamma 1-gamma 3, delta) were determined in adult rat brain by in situ hybridization. Each mRNA displayed a unique distribution, ranging from ubiquitous (alpha 1 mRNA) to narrowly confined (alpha 6 mRNA was present only in cerebellar granule cells). Some neuronal populations coexpressed large numbers of subunit mRNAs, whereas in others only a few GABAA receptor-specific mRNAs were found. Neocortex, hippocampus, and caudate-putamen displayed complex expression patterns, and these areas probably contain a large diversity of GABAA receptors. In many areas, a consistent coexpression was observed for alpha 1 and beta 2 mRNAs, which often colocalized with gamma 2 mRNA. The alpha 1 beta 2 combination was abundant in olfactory bulb, globus pallidus, inferior colliculus, substantia nigra pars reticulata, globus pallidus, zona incerta, subthalamic nucleus, medial septum, and cerebellum. Colocalization was also apparent for the alpha 2 and beta 3 mRNAs, and these predominated in areas such as amygdala and hypothalamus. The alpha 3 mRNA occurred in layers V and VI of neocortex and in the reticular thalamic nucleus. In much of the forebrain, with the exception of hippocampal pyramidal cells, the alpha 4 and delta transcripts appeared to codistribute. In thalamic nuclei, the only abundant GABAA receptor mRNAs were those of alpha 1, alpha 4, beta 2, and delta. In the medial geniculate thalamic nucleus, alpha 1, alpha 4, beta 2, delta, and gamma 3 mRNAs were the principal GABAA receptor transcripts. The alpha 5 and beta 1 mRNAs generally colocalized and may encode predominantly hippocampal forms of the GABAA receptor. These anatomical observations support the hypothesis that alpha 1 beta 2 gamma 2 receptors are responsible for benzodiazepine I (BZ I) binding, whereas receptors containing alpha 2, alpha 3, and alpha 5 contribute to subtypes of the BZ II site. Based on significant mismatches between alpha 4/delta and gamma mRNAs, we suggest that in vivo, the alpha 4 subunit contributes to GABAA receptors that lack BZ modulation.

1,557 citations


Journal ArticleDOI
TL;DR: Evidence suggests that a circuit involving the prefrontal cortex, amygdala, and related parts of the striatum, pallidum, and medial thalamus is involved in the functional neuroanatomy of depression.
Abstract: The functional neuroanatomy of unipolar major depression was investigated using positron emission tomography to measure differences in regional cerebral blood flow (BF). A relatively homogeneous subject group was obtained using criteria for familial pure depressive disease (FPDD), which are based upon family history as well as upon symptoms and course. Because of the absence of certain knowledge about the pathophysiology of mood disorders and their underlying functional neuroanatomy, we used data obtained from the subtraction of composite images from one-half of depressed and control subjects to identify candidate regions of interest. The major cortical region defined in this manner was statistically tested on a second set of subjects. Using this strategy, we found increased BF in an area that extended from the left ventrolateral prefrontal cortex onto the medial prefrontal cortical surface. Based upon the connectivity between these portions of the prefrontal cortex and the amygdala and evidence that the amygdala is involved in emotional modulation, activity was measured in the left amygdala and found to be significantly increased in the depressed group. A separate group of subjects with FPDD who were currently asymptomatic were also imaged to determine whether these findings represented abnormalities associated with the depressed state, or with a trait difference that might underlie the tendency to become depressed. Only the depressed group had increased activity in the left prefrontal cortex, suggesting that this abnormality represents a state marker of FPDD. Both the depressed and the remitted groups demonstrated increased activity in the left amygdala, though this difference achieved significance only in the depressed group. This suggests that the abnormality involving the left amygdala may represent a trait marker of FPDD, though further assessment in a larger sample size is necessary to establish this. These data along with other evidence suggest that a circuit involving the prefrontal cortex, amygdala, and related parts of the striatum, pallidum, and medial thalamus is involved in the functional neuroanatomy of depression.

1,253 citations


Journal ArticleDOI
TL;DR: To the knowledge, this is the first demonstration of such short-term steroid-mediated synaptic plasticity occurring naturally in the adult mammalian brain.
Abstract: We have found that the density of synapses in the stratum radiatum of the hippocampal CA1 region in the adult female rat is sensitive to estradiol manipulation and fluctuates naturally as the levels of ovarian steroids vary during the 5 d estrous cycle. In both cases, low levels of estradiol are correlated with lower synapse density, while high estradiol levels are correlated with a higher density of synapses. These synaptic changes occur very rapidly in that within approximately 24 hr between the proestrus and estrus stages of the estrous cycle, we observe a 32% decrease in the density of hippocampal synapses. Synapse density then appears to cycle back to proestrus values over a period of several days. To our knowledge, this is the first demonstration of such short-term steroid-mediated synaptic plasticity occurring naturally in the adult mammalian brain.

1,238 citations


Journal ArticleDOI
TL;DR: In this paper, the embryonic and postnatal expression of 13 GABAA receptor subunit genes in the rat CNS was studied by in situ hybridization and each transcript exhibited a unique regional and temporal developmental expression profile.
Abstract: The embryonic and postnatal expression of 13 GABAA receptor subunit genes in the rat CNS was studied by in situ hybridization. Each transcript exhibited a unique regional and temporal developmental expression profile. For example, in both embryonic and early postnatal cortex and thalamus, expression of the alpha 2, alpha 3, alpha 5, and beta 3 mRNAs was pronounced. In particular, the alpha 5 gene expression underwent a prominent peak in early brain. Subsequently, the thalamocortical expression of these four genes substantially diminished and was superseded in the adult by the alpha 1, alpha 4, beta 2, and delta subunit mRNAs. Similarly, gamma 1 and gamma 3 gene expression also dropped markedly during development, their initial stronger expression being restricted to relatively few structures. In contrast, gamma 2 gene expression was widespread and mostly remained constant with increasing age. The medial septum and globus pallidus were regions expressing few subunits in both early postnatal and adult stages, allowing clear developmental combinatorial changes to be inferred (alpha 2/alpha 3 beta 2 gamma 2 to alpha 1 beta 2 gamma 2, alpha 2/alpha 3 beta 2 gamma 1 to alpha 1 beta 2 gamma 1/gamma 2, respectively). In contrast, cerebellar Purkinje cells exhibited no developmental switch, expressing only the alpha 1, beta 2, beta 3, and gamma 2 mRNAs from birth to adult. Certain GABAA transcripts were also detected in germinal zones (e.g., beta 1, beta 3, gamma 1) and in embryonic peripheral tissues such as dorsal root ganglia (e.g., alpha 2, alpha 3, beta 3, gamma 2) and intestine (gamma 3). Some parallels in regional and temporal CNS expression were noted (e.g., alpha 1 beta 2, alpha 2 beta 3, alpha 4/alpha 6 delta), whereas the alpha 5 and beta 1 regional mRNA expressions converted over time. The changes of GABAA receptor subunit gene expression suggest a molecular explanation for earlier observations on changing ligand binding affinities. Thus, the composition, and presumably properties, of embryonic/early postnatal rat GABAA receptors differs markedly from those expressed in the adult brain.

1,124 citations


Journal ArticleDOI
TL;DR: The results demonstrate that the new series sample method combined with three- dimensional reconstruction reveals quantitative changes in the frequency and structure of spines and synapses that are not discernable by other methods and are likely to have dramatic effects on synaptic physiology and plasticity.
Abstract: It has long been hypothesized that changes in dendritic spine structure may modify the physiological properties of synapses located on them. Due to their small size, large number, and highly variable shapes, standard light microscopy of Golgi impregnations and electron microscopy (EM) of single thin sections have not proved adequate to identify most spines in a sample or to quantify their structural dimensions and composition. Here we describe a new approach, the series sample, that was developed to classify by shape and subcellular composition all of the spines and synapses in a sample of neuropil by viewing them through serial EM sections. Spines in each class are then randomly selected for serial reconstruction and measurement in three dimensions. This approach was used to assess whether structural changes in hippocampal CA1 spines could contribute to the enhanced synaptic transmission and the greater endurance of long-term potentiation (LTP) that occur with maturation. Our results show a near doubling in the total density of synapses in the neuropil and along reconstructed dendrites between postnatal day 15 (PND 15) and adult ages. However, this doubling does not occur uniformly across all spine and synapse morphologies. Thin spines, mushroom spines containing perforated postsynaptic densities (PSDs) and spine apparatuses, and branched spines increase by about four-fold in density between PND 15 and adult ages. In contrast, stubby spines decrease by more than half and no change occurs in mushroom spines with macular PSDs or in dendritic shaft synapses. The stubby spines that remain are smaller in adults than at PND 15 and the mushroom spines are larger, while no change occurs in the three-dimensional structure of thin spines. Only a few spine necks at either age are constricted or long enough to attenuate charge transfer; therefore, the doubling in synapses should mediate the enhancement of synaptic transmission that occurs with maturation. In addition, LTP is not likely to be mediated by widening of spine necks at either age. However, the constricted spine necks could serve to concentrate specific molecules at activated synapses, thereby enhancing the specificity and endurance of LTP with maturation. These results demonstrate that the new series sample method combined with three-dimensional reconstruction reveals quantitative changes in the frequency and structure of spines and synapses that are not discernable by other methods and are likely to have dramatic effects on synaptic physiology and plasticity.

1,031 citations


Journal ArticleDOI
TL;DR: The prevalence of activations related to the expectation of reward suggests that ventral striatal neurons have access to central representations of reward and thereby participate in the processing of information underlying the motivational control of goal-directed behavior.
Abstract: Projections from cortical and subcortical limbic structures to the basal ganglia are predominantly directed to the ventral striatum. The present study investigated how the expectation of external events with behavioral significance is reflected in the activity of ventral striatal neurons. A total of 420 neurons were studied in macaque monkeys performing in a delayed go-no-go task. Lights of different colors instructed the animal to do an arm-reaching movement or refrain from moving, respectively, when a trigger light was illuminated a few seconds later. Task performance was reinforced by liquid reward in both situations. A total of 60 ventral striatal neurons showed sustained increases of activity before the occurrence of individual task events. In 43 of these neurons, activations specifically preceded the delivery of reward, independent of the movement or no-movement reaction. In a series of additional tests, these activations were time locked to the subsequent reward, disappeared within a few trials when reward was omitted, and were temporally unrelated to mouth movements. Changes in the appetitive value of the reward liquid modified the magnitude of activations, suggesting a possible relationship to the hedonic properties of the expected event. Activations also occurred when reward was delivered in a predictable manner outside of any behavioral task. These data suggest that neurons in the ventral striatum are activated during states of expectation of individual environmental events that are predictable to the subject through its past experience. The prevalence of activations related to the expectation of reward suggests that ventral striatal neurons have access to central representations of reward and thereby participate in the processing of information underlying the motivational control of goal-directed behavior.

782 citations


Journal ArticleDOI
TL;DR: The cochlea is a hydromechanical frequency analyzer located in the inner ear whose principal role is to perform a real- time spectral decomposition of the acoustic signal in producing a spatial frequency map.
Abstract: Peter Dallas Auditory Physiology Laboratory (The Hugh Knowles Center) and Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208 The cochlea is a hydromechanical frequency analyzer located in the inner ear (Fig. 1 a). Its principal role is to perform a real- time spectral decomposition of the acoustic signal in producing a spatial frequency map. The frequency analysis may be un- derstood with the aid of Figure 1 b, which shows a straightened cochlea with a snapshot of its basilar membrane displaced in response to a single-frequency sound (pure tone). Upon delivery of an acoustic signal into the fluid-filled cochlea, the basilar membrane undergoes an oscillatory motion at the frequency of the sound, resulting in a wave traveling toward its distal end. The drawing shows an instantaneous view ofthis traveling wave. The wave is spatially confined along the length of the basilar membrane, and the location of its maximum amplitude is re- lated to the frequency of the sound. The higher the frequency, the more restricted the disturbance to the proximal end. The vibrating membrane supports the sense organ of hearing, the spiral organ of Corti (Fig. 2) which is deformed maximally in the region of the peak of the traveling wave. In this location, the sensory receptor cells of the organ of Corti receive maximal mechanical stimulation, transduce it into maximal electrical signals, and thus produce maximal afferent sensory outflow from the cochlea. Thus, mechanical frequency analysis is performed by matching particular frequencies with particular groups of auditory receptor cells and their nerve fibers. Understanding of frequency analysis in the inner ear pro- gressed through three main epochs. The first was dominated by Helmholtz’s suggestions that lightly damped, spatially ordered, mechanically resonant elements in the cochlea perform the spec- tral analysis (this period was reviewed by Wever, 1949). The second epoch, lasting from the late 1940s to the early 1970s was dominated by von Bekesy’s description of the traveling wave (von BtkCsy, 1960). We are now in the third epoch (an overview of its evolution is given in Dallos, 1988) during which a fundamentally different paradigm has emerged. According to this paradigm, von Btktsy’s traveling wave is boosted by a local electromechanical amplification process in which one of the mammalian ear’s sensory cell groups, outer hair cells, function as both sensors and mechanical feedback elements. The ideas that the operation of a sense organ is dependent upon local mechanical feedback modification by what resembles a sensory receptor cell, that such mechanical feedback may operate at audio frequencies utilizing some novel cellular motor, and that

Journal ArticleDOI
TL;DR: The delta-subunit mRNA appears to codistribute with alpha- subunit mRNAs (alpha 4 and alpha 6) associated with GABAA subunits that fail to bind benzodiazepine agonists.
Abstract: In an effort to determine subunit compositions of in vivo GABAA receptors, the cellular localization of 13 subunit encoding mRNAs (alpha 1-alpha 6, beta 1-beta 3, gamma 2-gamma 3, delta) was determined in the rat olfactory bulb and cerebellum. Cerebellar granule cells expressed significant quantities of alpha 1, alpha 6, beta 2, beta 3, gamma 2, and delta mRNAs. They contained very much lower levels of alpha 4, beta 1, and gamma 3 mRNAs, and the alpha 2, alpha 3, alpha 5, and gamma 1 genes appeared to be silent. Purkinje cells contained only the alpha 1, beta 2, beta 3, and gamma 2 mRNAs. Putative Bergmann glial cells were found to contain the gamma 1 mRNA and possibly the alpha 2 mRNA. In the molecular layer, only the alpha 1, beta 2 and gamma 2 mRNAs were expressed in stellate/basket cells. The alpha 3 probe hybridized weakly to targets in the molecular layer. The inferior olivary nucleus contained significant quantities of alpha 2, alpha 4, and gamma 1 transcripts, with the alpha 1, alpha 3, beta 2, beta 3, and gamma 2 mRNAs also present. In the olfactory bulb, mitral cells were found to express the alpha 1, beta 1, beta 2, beta 3, and gamma 2 mRNAs strongly and the alpha 3 mRNA weakly. Tufted cells contained alpha 1, alpha 3, beta 2, beta 3, and gamma 2 mRNAs and, occasionally, the alpha 2 mRNA. In the internal granule cells the alpha 2, alpha 4, alpha 5, beta 3, and delta mRNAs were all present. Low levels of alpha 3, gamma 1, gamma 2, and gamma 3 mRNAs were also noted in these cells. Periglomerular cells expressed low levels of alpha 2, alpha 3, alpha 4, beta 2, beta 3, gamma 1, gamma 2, and gamma 3 mRNAs. No alpha 6 mRNA was present in the olfactory bulb. Correlations that are general ones from other brain regions are the colocalizations of alpha 1 beta 2, alpha 2 beta 3, and alpha 4 delta mRNAs. In both the olfactory bulb and cerebellum, alpha 1 beta 2 gamma 2 receptor cores are probably employed. The delta-subunit mRNA appears to codistribute with alpha- subunit mRNAs (alpha 4 and alpha 6) associated with GABAA subunits that fail to bind benzodiazepine agonists.

Journal ArticleDOI
TL;DR: The distribution and abundance of 5-HT1A receptor mRNA in different rat brain areas generally correlate with those of the binding sites, suggesting that 5- HT1A receptors are predominantly somatodendritic receptors.
Abstract: In order to localize the cells expressing 5-HT1A receptors in the rat brain, we used in situ hybridization histochemistry to visualize the distribution of the mRNA coding for 5-HT1A receptors. Oligonucleotides derived from different parts of the coding region of the rat 5-HT1A receptor gene were used as hybridization probes. 5-HT1A binding sites were visualized on consecutive sections by receptor autoradiography using 3H-8-hydroxy-2-(di-n-propylamino)tetralin as ligand. The highest levels of hybridization were observed in the dorsal raphe nucleus, septum, hippocampus, entorhinal cortex, and interpeduncular nucleus. Positive hybridization signals were also present in other areas, such as the olfactory bulb; cerebral cortex; some thalamic and hypothalamic nuclei; several nuclei of the brainstem, including all the remaining raphe nuclei, nucleus of the solitary tract, and nucleus of the spinal tract of the trigeminus; and the dorsal horn of the spinal cord. The distribution and abundance of 5-HT1A receptor mRNA in different rat brain areas generally correlate with those of the binding sites, suggesting that 5-HT1A receptors are predominantly somatodendritic receptors.

Journal ArticleDOI
TL;DR: The results suggest that differences in the pathophysiology of gray and white matter anoxic injury are likely to necessitate multiple strategies for optimal CNS protection, and suggest that Ca2+ loading might occur via reverse operation of the Na(+)-Ca2+ exchanger.
Abstract: White matter of the mammalian CNS suffers irreversible injury when subjected to anoxia/ischemia. However, the mechanisms of anoxic injury in central myelinated tracts are not well understood. Although white matter injury depends on the presence of extracellular Ca2+, the mode of entry of Ca2+ into cells has not been fully characterized. We studied the mechanisms of anoxic injury using the in vitro rat optic nerve, a representative central white matter tract. Functional integrity of the nerves was monitored electrophysiologically by quantitatively measuring the area under the compound action potential, which recovered to 33.5 +/- 9.3% of control after a standard 60 min anoxic insult. Reducing Na+ influx through voltage-gated Na+ channels during anoxia by applying Na+ channel blockers (TTX, saxitoxin) substantially improved recovery; TTX was protective even at concentrations that had little effect on the control compound action potential. Conversely, increasing Na+ channel permeability during anoxia with veratridine resulted in greater injury. Manipulating the transmembrane Na+ gradient at various times before or during anoxia greatly affected the degree of resulting injury; applying zero-Na+ solution (choline or Li+ substituted) before anoxia significantly improved recovery; paradoxically, the same solution applied after the start of anoxia resulted in more injury than control. Thus, ionic conditions that favored reversal of the normal transmembrane Na+ gradient during anoxia promoted injury, suggesting that Ca2+ loading might occur via reverse operation of the Na+)-Ca2+ exchanger. Na(+)- Ca2+ exchanger blockers (bepridil, benzamil, dichlorobenzamil) significantly protected the optic nerve from anoxic injury. Together, these results suggest the following sequence of events leading to anoxic injury in the rat optic nerve: anoxia causes rapid depletion of ATP and membrane depolarization leading to Na+ influx through incompletely inactivated Na+ channels. The resulting rise in the intracellular [Na+], coupled with membrane depolarization, causes damaging levels of Ca2+ to be admitted into the intracellular compartment through reverse operation of the Na(+)-Ca2+ exchanger. These observations emphasize that differences in the pathophysiology of gray and white matter anoxic injury are likely to necessitate multiple strategies for optimal CNS protection.

Journal ArticleDOI
TL;DR: The results show that infusion of the NMDA antagonist D,L-2- amino-5-phosphonovaleric acid (AP5) into the amygdala, a limbic structure known to be important for fear conditioning, dose-dependently blocked extinction of conditioned fear and suggest that an NMDA-dependent process might underlie the extinction of Conditioned fear.
Abstract: Data derived from in vitro preparations indicate that NMDA receptors play a critical role in synaptic plasticity in the CNS. More recently, in vivo pharmacological manipulations have suggested that an NMDA- dependent process may be involved in specific forms of behavioral plasticity. All of the work thus far has focused on the possible role of NMDA receptors in the acquisition of responses. However, there are many examples in the behavioral literature of learning-induced changes that involve the reduction or elimination of a previously acquired response. Experimental extinction is a primary example of the elimination of a learned response. Experimental extinction is well described in the behavioral literature, but has not received the same attention in the neurobiological literature. As a result, the neural mechanisms that underlie this important form of learning are not at all understood. In the present experiments, the fear-potentiated startle paradigm was employed to begin to investigate neural mechanisms of extinction. The results show that infusion of the NMDA antagonist D,L-2- amino-5-phosphonovaleric acid (AP5) into the amygdala, a limbic structure known to be important for fear conditioning, dose-dependently blocked extinction of conditioned fear. Control experiments showed that the blockade of extinction was neither the result of the permanent disruption of amygdaloid function nor the result of decreased sensitivity of the animals to the conditioned stimulus. Infusion of AP5 into the interpositus nucleus of the cerebellum, a control site, did not block extinction. Finally, intra-amygdala infusion of a selected dose of the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione did not block extinction of conditioned fear. These results, together with a previous report from our laboratory (Miserendino et al., 1990), demonstrate the importance of the amygdala in the elaboration of conditioned fear and suggest that an NMDA-dependent process might underlie the extinction of conditioned fear.

Journal ArticleDOI
TL;DR: Data show that striatal LTD requires three main physiological and pharmacological conditions: (1) membrane depolarization and action potential discharge of the postsynaptic cell during the conditioning tetanus, (2) activation of glutamate metabotropic receptors, and (3) coactivation of D1 and D2 DA receptors.
Abstract: The effect of tetanic activation of corticostriatal glutamatergic fibers was studied in striatal slices by utilizing extracellular and intracellular recording techniques. Tetanic stimulation produced a long-term synaptic depression (LTD) (> 2 h) of both extracellularly recorded field potentials and intracellularly recorded EPSPs. LTD was not coupled with changes of intrinsic membrane properties of the recorded neurons. In some neurons, repetitive cortical activation produced a short-term posttetanic potentiation (1-3 min). Subthreshold tetanic stimulation, which under control condition did not cause LTD, induced LTD when associated with membrane depolarization. Moreover, LTD was not expressed in cells in which the conditioning tetanus was coupled with hyperpolarization of the membrane. Bath application of aminophosphonovalerate (30-50 microM), an antagonist of NMDA receptors, did not affect the amplitude of the synaptic potentials and the expression of LTD. Striatal LTD was significantly reduced by the pretreatment of the slices with 30 microM 2-amino-3-phosphonopropionic acid, an antagonist of glutamate metabotropic receptors. LTD was not blocked by bicuculline (30 microM), a GABA(A) receptor antagonist. Scopolamine (3 microM), an antagonist of muscarinic receptors, induced a slight, but significant, increase of the amplitude of LTD. Both SCH 23390 (3 microM), an antagonist of D1 dopamine (DA) receptors, and I-sulpiride (1 microM), an antagonist of D2 DA receptors, blocked LTD. LTD was also absent in slices obtained from rats in which the nigrostriatal DA system was lesioned by unilateral nigral injection of 6-hydroxydopamine. In DA-depleted slices, LTD could be restored by applying exogenous DA (30 microM) before the conditioning tetanus. In DA-depleted slices, LTD could also be restored by coadministration of SKF 38393 (3-10 microM), a D1 receptor agonist, and of LY 171555 (1-3 microM), a D2 receptor agonist. Application of a single class of DA receptor agonists failed to restore LTD. These data show that striatal LTD requires three main physiological and pharmacological conditions: (1) membrane depolarization and action potential discharge of the postsynaptic cell during the conditioning tetanus, (2) activation of glutamate metabotropic receptors, and (3) coactivation of D1 and D2 DA receptors. Striatal LTD may alter the output signals from the striatum to the other structures of the basal ganglia. This form of synaptic plasticity can influence the striatal control of motor activity.

Journal ArticleDOI
TL;DR: It is concluded that NT2 cells and NT2-N cells represent a unique model system for studies of human neurons, and a novel vehicle for the expression of diverse gene products in terminally differentiated polarized neurons.
Abstract: NTera 2/cl.D1 (NT2) cells, a human teratocarcinoma cell line, were manipulated following retinoic acid treatment to yield greater than 95% pure cultures of neuronal cells (NT2-N cells). The commitment of NT2-N cells to a stable neuronal phenotype is irreversible as judged by the lack of mitotic activity or phenotypic reversion over a period of 2 months in culture. Furthermore, NT2-N cells express a variety of neuronal markers including many neuronal cytoskeletal proteins, secretory markers, and surface markers. NT2-N cells resemble primary neuronal cultures from rodents morphologically and in density of process outgrowth and, like primary neurons, go on to elaborate processes that differentiate into axons and dendrites. This culture method yields sufficient highly differentiated postmitotic NT2-N cells for both biochemical and molecular biological studies. Indeed, when undifferentiated NT2 cells were stably transfected with a beta-galactosidase (beta-gal) expression plasmid, beta-gal expression was shown to be present in both undifferentiated NT2 and postmitotic NT2-N cells. Thus, the ability to transfect expression plasmids into undifferentiated NT2 cells will allow the introduction of normal and mutant gene products into cells that can then be induced to become stable, postmitotic human neurons. We conclude that NT2 cells and NT2-N cells represent a unique model system for studies of human neurons, and a novel vehicle for the expression of diverse gene products in terminally differentiated polarized neurons.

Journal ArticleDOI
TL;DR: The results suggest that adrenal hormones normally suppress the birth of both glia and neurons in the adult rat dentate gyrus.
Abstract: The rat dentate gyrus is unusual among mammalian brain regions in that it shows cell birth well into adulthood. During development, dentate gyrus cell birth is regulated by adrenal steroids. However, it is presently unknown whether cell division in the adult is also mediated by these same factors. In order to determine whether this is the case, we combined adrenalectomy, with or without corticosterone (CORT) replacement, and 3H-thymidine autoradiography, Nissl staining, and immunohistochemistry for the glial cell markers vimentin and glial fibrillary acidic protein (GFAP) as well as for the neuronal marker neuron-specific enolase. Removal of circulating adrenal steroids resulted in a greater density of both GFAP-immunoreactive and vimentin- immunoreactive cells compared to sham-operated animals; CORT replacement prevented increases in both of these cell types. The increase in the density of vimentin-immunoreactive cells probably resulted from an increase in the birth of these cells, as adrenalectomized rats showed greater numbers of 3H-thymidine-labeled vimentin-positive cells compared to sham rats. In contrast, no changes in the number of 3H-thymidine-labeled GFAP-positive cells were observed with adrenalectomy, indicating that the increase in this cell type probably does not involve cell birth. In addition, the density of 3H- thymidine-labeled cells that were not immunoreactive for either glial cell marker and that showed neuronal characteristics was dramatically increased with adrenalectomy. These results suggest that adrenal hormones normally suppress the birth of both glia and neurons in the adult rat dentate gyrus.

Journal ArticleDOI
TL;DR: A momentary impact to the surface of the brain can cause selective, bilateral hippocampal injury with associated abnormalities in dentate gyrus physiology, and the pattern of cell loss is similar to that observed in some patients with temporal lobe epilepsy.
Abstract: Despite intensive study, the neurobiological basis of epilepsy and persistent memory impairment following traumatic head injury remains unknown. Since abnormalities of the hippocampus are known to be associated with temporal lobe seizures and memory dysfunction, we investigated the effects of experimental traumatic brain injury on hippocampal structure and function in the rat. Using a model of fluid- percussion injury, we have discovered that neurons of the dentate hilus are vulnerable to a brief, unilateral impact to the extradural surface of the brain. One week after trauma, there was a dramatic reduction in hilar neurons ipsilateral to the impact, and a milder but significant decrease in neurons on the contralateral side as well. This neuronal loss was highly selective since adjacent dentate granule and pyramidal neurons appeared relatively unaffected. Immunocytochemistry showed that the hilar cell loss included a loss of somatostatin-immunoreactive neurons, and degeneration stains provided evidence that irreversible hilar injury occurred within 4 hr of impact. To assess the functional effects of the hilar damage, dentate granule cell field potentials were measured in response to perforant path stimulation. This revealed abnormal dentate granule cell hyperexcitability at 2.0 Hz stimulation in many of the injured animals. The presence of abnormal hyperexcitability correlated with the loss of hilar neurons. Thus, a momentary impact to the surface of the brain can cause selective, bilateral hippocampal injury with associated abnormalities in dentate gyrus physiology. Furthermore, the pattern of cell loss is similar to that observed in some patients with temporal lobe epilepsy.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: Low micromolar concentrations of memantine, levels known to be tolerated by patients receiving the drug for the treatment of Parkinson's disease, prevent NMDA receptor-mediated neurotoxicity in cultures of rat cortical and retinal ganglion cell neurons; memantine also appears to be both safe and effective in a rat stroke model, suggesting that memantine has considerable therapeutic potential for the myriad of clinical entities associated with NMda receptor- mediated neurotoxicity.
Abstract: Excessive activation of NMDA receptors is thought to mediate the calcium-dependent neurotoxicity associated with hypoxic-ischemic brain injury, trauma, epilepsy, and several neurodegenerative diseases. For this reason, various NMDA antagonists have been investigated for their therapeutic potential in these diseases, but heretofore none have proven to be both effective and safe. In the present study, memantine, an adamantane derivative similar to the antiviral drug amantadine, is shown to block the channels activated by NMDA receptor stimulation. From whole-cell and single-channel recording experiments, the mechanism of action of memantine is deduced to be open-channel block, similar to MK-801; however, unlike MK-801, memantine is well tolerated clinically. Compared to MK-801, memantine's safety may be related to its faster kinetics of action with rapid blocking and unblocking rates at low micromolar concentrations. Furthermore, at these levels memantine is an uncompetitive antagonist and should theoretically allow near-normal physiological NMDA activity throughout the brain even in the face of pathologically high focal concentrations of glutamate. These pharmacological properties confer upon memantine a therapeutic advantage against NMDA receptor-mediated neurotoxicity with few side effects compared with other organic NMDA open-channel blockers. Moreover, memantine is increasingly effective against escalating levels of glutamate, such as those observed during a stroke. Low micromolar concentrations of memantine, levels known to be tolerated by patients receiving the drug for the treatment of Parkinson's disease, prevent NMDA receptor-mediated neurotoxicity in cultures of rat cortical and retinal ganglion cell neurons; memantine also appears to be both safe and effective in a rat stroke model. These results suggest that memantine has considerable therapeutic potential for the myriad of clinical entities associated with NMDA receptor-mediated neurotoxicity.

Journal ArticleDOI
TL;DR: The results demonstrate that changes of regional cerebral activity associated with early learning of skilled movements occur in sites that are a subset of a more widely distributed network that is active during motor execution.
Abstract: The functional anatomy of motor skill acquisition was investigated in six normal human subjects who learned to perform a pursuit rotor task with their dominant right hand during serial positron emission tomography (PET) imaging of relative cerebral blood flow (relCBF). The effect of motor execution, rather than learning, was identified by a comparison of four motor performance scans with two control scans (eye movements only). Motor execution was associated with activation of a distributed network involving cortical, striatonigral, and cerebellar sites. Second, the effect of early motor learning was examined. Performance improved from 17% to 66% mean time on target across the four PET scans obtained during pursuit rotor performance. Across the same scans, significant longitudinal increases of relCBF were located in the left primary motor cortex, the left supplementary motor area, and the left pulvinar thalamus. The results demonstrate that changes of regional cerebral activity associated with early learning of skilled movements occur in sites that are a subset of a more widely distributed network that is active during motor execution.

Journal ArticleDOI
TL;DR: A functional link between the activity of direction selective neurons and perceptual judgements of motion direction is demonstrated, and monkeys indicated that motion was in the neurons' preferred direction more frequently on stimulated trials than on nonstimulated trials.
Abstract: Physiological and behavioral evidence suggests that the activity of direction selective neurons in visual cortex underlies the perception of moving visual stimuli. We tested this hypothesis by measuring the effects of cortical microstimulation on perceptual judgements of motion direction. To accomplish this, rhesus monkeys were trained to discriminate the direction of motion in a near-threshold, stochastic motion display. For each experiment, we positioned a microelectrode in the middle of a cluster of neurons that shared a common preferred direction of motion. The psychophysical task was then adjusted so that the visual display was presented directly over the neurons’ receptive field. The monkeys were required to discriminate between motion shown either in the direction preferred by the neurons or in the opposite direction. On half the trials of an experiment, we applied electrical microstimulation while monkeys viewed the motion display. We hypothesized that enhancing the neurons’ discharge rate would introduce a directionally specific signal into the cortex and thereby influence the monkeys’ choices on the discrimination task. We compared the monkeys’ performance on “stimulated” and “nonstimulated” trials in 139 experiments; all trials within an experiment were presented in random order. Statistically significant effects of microstimulation were obtained in 89 experiments. In 88 of the 89 experiments with significant effects (97%), the monkeys indicated that motion was in the neurons’ preferred direction more frequently on stimulated trials than on nonstimulated trials. The data demonstrate a functional link between the activity of direction selective neurons and perceptual judgements of motion direction.

Journal ArticleDOI
TL;DR: In vivo and in vitro observations suggest that neocortical activation results from muscarinic modulation of intrinsic neural oscillations and firing modes, and NB cholinergic neurons may play a critical role in producing different states of neocorticals function.
Abstract: In the mammalian neocortex, the EEG reflects the state of behavioral arousal. The EEG undergoes a transformation, known as activation, during the transition from sleep to waking. Abundant evidence indicates the involvement of the neurotransmitter acetylcholine (ACh) in EEG activation; however, the cellular basis of this involvement remains unclear. We have used electrophysiological techniques with in vivo and in vitro preparations to demonstrate actions of endogenous ACh on neurons in auditory neocortex. In vivo stimulation of the nucleus basalis (NB), a primary source of neocortical ACh, (1) elicited EEG activation via cortical muscarinic receptors, (2) depolarized cortical neurons, and (3) produced a change in subthreshold membrane potential fluctuations from large-amplitude, slow (1-5 Hz) oscillations to low-amplitude, fast (20-40 Hz) oscillations. The NB-mediated change in pattern of membrane potential fluctuations resulted in a shift of spike discharge pattern from phasic to tonic. Stimulation of afferents in the in vitro neocortex elicited cholinergic actions on putative layer 5 pyramidal neurons. Acting via muscarinic receptors, endogenous ACh (1) reduced slow, rhythmic burst discharge and facilitated higher-frequency, single-spike discharge in burst-generating neurons, and (2) facilitated the appearance and magnitude of intrinsic membrane potential oscillations. These in vivo and in vitro observations suggest that neocortical activation results from muscarinic modulation of intrinsic neural oscillations and firing modes. Rhythmic-bursting pyramidal neurons in layer 5 may act as cortical pacemakers; if so, then modifying their discharge characteristics could alter local cortical networks. Larger, intercortical networks could also be modified, due to the widespread projections of NB neurons. Thus, NB cholinergic neurons may play a critical role in producing different states of neocortical function.

Journal ArticleDOI
TL;DR: The dyes make it possible optically to study vesicle exocytosis and recycling in living nerve terminals in real time, and should be useful for marking terminals in a variety of preparations according to their level of activity.
Abstract: Living motor nerve terminals from several species can be stained in an activity-dependent fashion by certain styryl dyes, such as RH414, RH795, and a new dye, FM1–43, which can be imaged independently of the others. The dyes evidently become trapped within recycled synaptic vesicles. In frog cutaneus pectoris muscle, bright fluorescent spots spaced regularly along the length of the nerve terminals appear after stimulation in the presence of the dye. The spots align well with postsynaptic ACh receptors and are persistent for many hours, unless further stimulation is given, in which case the spots disappear. Destaining, like staining, requires transmitter release and proceeds gradually over several minutes at high stimulus frequencies (e.g., 30 Hz), and fluorescent spots in the same terminal disappear at about the same rate. We suggest that each spot is a cluster of hundred of synaptic vesicles and that the mechanism of staining involves the ability of the dyes to partition reversibly into the outer leaflet of surface membranes, without being able to penetrate the entire membrane thickness. Then, during endocytosis following transmitter release, dye molecules become trapped in recycled synaptic vesicle membranes. The dyes therefore make it possible optically to study vesicle exocytosis and recycling in living nerve terminals in real time, and should be useful for marking terminals in a variety of preparations according to their level of activity.

Journal ArticleDOI
TL;DR: The results suggest that EAAs acting at the NMDA receptor contribute to central sensitization and persistent nociception following subcutaneous formalin injection.
Abstract: The contribution of excitatory amino acids (EAAs) to the development of central sensitization and persistent nociception in response to tissue injury in rats was examined following the subcutaneous injection of formalin into the hindpaw. Formalin-induced nociceptive behaviors were enhanced by intrathecal pretreatment with the EAAs L-glutamate and L- aspartate. An enhancement of the formalin nociceptive response was also produced by intrathecal pretreatment with the receptor-selective EAA agonists NMDA and trans-(+/- )-1-amino-1,3-cyclopentane dicarboxylic acid (ACPD), but not (R,S)-alpha-amino-3-hydroxy-5-methylisozazole-4- propionic acid hydrobromide (AMPA). The effect of NMDA was enhanced by a combined administration with AMPA or APCD. Formalin nociceptive responses were dose-dependently reduced by intrathecal pretreatment with the NMDA receptor antagonists 2-amino-5-phosphonovaleric acid (APV) and (+)-MK-801 hydrogen maleate, but not the selective AMPA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione or the selective metabotropic EAA receptor antagonist 2-amino-3-phosphonopropionic acid. The results suggest that EAAs acting at the NMDA receptor contribute to central sensitization and persistent nociception following subcutaneous formalin injection.

Journal ArticleDOI
TL;DR: The results suggest that chronic treatment with nicotine under conditions resulting in maximal steady-state increases in L-3H-nicotine binding has little effect on RNA levels encoding any of four nicotinic alpha-subunits and the beta 2-subunit.
Abstract: DBA mice were chronically treated with nicotine by continuous intravenous infusion of 4.0 mg/kg/hr for 10 d. Drug-treated mice were tolerant to the acute effects of nicotine on locomotor activity and body temperature. The effect of chronic treatment on the amount of L-3H-nicotine binding and RNA encoding for alpha 4, the most widely expressed nicotinic alpha-subunit, was measured in three brain regions. Chronic treatment increased L-3H-nicotine binding in cortex and midbrain but had no effect in cerebellum. In contrast, chronic treatment had no effect on the levels of mRNA encoding for alpha 4 in any of the three brain regions. Subsequently brains were sectioned and L-3H-nicotine binding was measured using quantitative autoradiographic methods. In addition, the relative amounts of mRNA for the major nicotinic receptor subunits (alpha 4 and beta 2), as well as for three additional minor subunits (alpha 2, alpha 3, and alpha 5), were determined by in situ hybridization histochemistry followed by quantitation of image intensity. Chronic nicotine treatment resulted in increases in the amount of L-3H-nicotine binding in many but not all brain areas measured. In contrast, chronic treatment had little effect on the intensity of the hybridization signal for the nicotinic subunit mRNA. The results suggest that chronic treatment with nicotine under conditions resulting in maximal steady-state increases in L-3H-nicotine binding has little effect on RNA levels encoding any of four nicotinic alpha-subunits and the beta 2-subunit.

Journal ArticleDOI
TL;DR: It is established that D-AP5 impairs spatial learning in a linear dose-dependent manner, highly correlated with its corresponding impairment of hippocampal LTP in vivo, and support is offered for the hypothesis that activation of NMDA receptors is necessary for certain kinds of learning.
Abstract: This series of experiments investigated whether the NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) could induce impairments of spatial learning across a dose range comparable to its impairment of hippocampal long-term potentiation (LTP) in vivo. Estimations of the extracellular concentration of D-AP5 in hippocampus using microdialysis were also made to compare whether these impairments occur at concentrations similar to those required to impair LTP in the in vitro hippocampal slice. Rats were chronically infused with D-AP5 into the lateral ventricle at a range of concentrations (0-50 mM) via osmotic minipumps. They were first trained to find and escape onto a hidden platform in an open-field water maze task. After the behavioral learning, they were anesthetized with urethane and an attempt was made to evoke and monitor hippocampal LTP. Extracellular samples of D-AP5 in hippocampus were then taken using microdialysis, and finally, the animals were killed and tissue samples dissected. The microdialysis and tissue samples were analyzed for D-AP5 content using HPLC with fluorescence detection. The results established, first, that D-AP5 impairs spatial learning in a linear dose-dependent manner, highly correlated with its corresponding impairment of hippocampal LTP in vivo. No concentration of D-AP5 was observed to block LTP without affecting learning. Second, the microdialysis estimates indicated that, subject to certain assumptions, D-AP5 causes these impairments at extracellular concentrations comparable to those that impair LTP in vitro. Third, comparison of the whole tissue and microdialysis samples revealed a concentration ratio of approximately 30:1, indicating that 97% of the intracerebral D-AP5 is inaccessible to the dialysis probes. Infusion of 20 mM EGTA was found to cause a sevenfold increase in D-AP5 in the dialysis perfusates, suggesting that at least part of the inaccessible D-AP5 is trapped by a calcium-dependent mechanism. Two further behavioral control studies indicated that the D-AP5-induced impairment of spatial learning is unlikely to be secondary to a drug-induced motor disturbance, and that the performance of the D-AP5 group whose concentration was just sufficient to block hippocampal LTP completely was statistically indistinguishable from that of a group of rats with bilateral hippocampal lesions induced by ibotenic acid. Taken together, these findings offer support for the hypothesis that activation of NMDA receptors is necessary for certain kinds of learning.

Journal ArticleDOI
Eric J. Nestler1
TL;DR: Future work needs to understand how CREB and DeltaFosB, acting in concert with numerous other drug-induced molecular changes in nucleus accumbens and many other brain regions, interact with one another to produce the complex behavioral phenotype that defines addiction.
Abstract: Regulation of gene expression is one mechanism by which drugs of abuse can induce relatively long-lasting changes in the brain to cause a state of addiction. Here, we focus on two transcription factors, CREB (cAMP response element binding protein) and DeltaFosB, which contribute to drug-induced changes in gene expression. Both are activated in the nucleus accumbens, a major brain reward region, but mediate different aspects of the addicted state. CREB mediates a form of tolerance and dependence, which dampens an individual's sensitivity to subsequent drug exposure and contributes to a negative emotional state during early phases of withdrawal. In contrast, DeltaFosB mediates a state of relatively prolonged sensitization to drug exposure and may contribute to the increased drive and motivation for drug, which is a core symptom of addictive disorders. A major goal of current research is to identify the many target genes through which CREB and DeltaFosB mediate these behavioral states. In addition, future work needs to understand how CREB and DeltaFosB, acting in concert with numerous other drug-induced molecular changes in nucleus accumbens and many other brain regions, interact with one another to produce the complex behavioral phenotype that defines addiction.

Journal ArticleDOI
TL;DR: It is demonstrated that subtypes of transient Ca2+ current are present in two different classes of thalamic neurons, including steady-state inactivation and sensitivities to blockade by divalent cations, amiloride, and antiepileptic drugs.
Abstract: The inhibitory GABAergic projection of thalamic nucleus reticularis (nRt) neurons onto thalamocortical relay cells (TCs) is important in generating the normal thalamocortical rhythmicity of slow wave sleep, and may be a key element in the production of abnormal rhythms associated with absence epilepsy. Both TCs and nRt cells can generate prominent Ca(2+)-dependent low-threshold spikes, which evoke bursts of Na(+)-dependent fast spikes, and are influential in rhythm generation. Substantial differences in the pattern of burst firing in TCs versus nRt neurons led us to hypothesize that there are distinct forms of transient Ca2+ current (I(T)) underlying burst discharges in these two cell types. Using whole-cell voltage-clamp recordings, we analyzed I(T) in acutely isolated TCs and nRt neurons and found three key differences in biophysical properties. (1) The transient Ca2+ current in nRt neurons inactivated much more slowly than I(T) in TCs. This slow current is thus termed I(Ts). (2) The rate of inactivation for I(Ts) was nearly voltage independent. (3) Whole-cell I(Ts) amplitude was increased when Ba2+ was substituted for Ca2+ as the charge carrier. In addition, activation kinetics were slower for I(Ts) and the activation range was depolarized compared to that for I(T). Other properties of I(Ts) and I(T) were similar, including steady-state inactivation and sensitivities to blockade by divalent cations, amiloride, and antiepileptic drugs. Our findings demonstrate that subtypes of transient Ca2+ current are present in two different classes of thalamic neurons. The properties of I(Ts) lead to generation of long-duration calcium-dependent spike bursts in nRt cells. The resultant prolonged periods of GABA release onto TCs would play a critical role in maintaining rhythmicity by inducing TC hyperpolarization and promoting generation of low-threshold calcium spikes within relay nuclei.

Journal ArticleDOI
TL;DR: TTX-sensitive and TTX-resistant sodium channel currents were analyzed in acutely dissociated dorsal root ganglion (DRG) neurons isolated from 3–12-d-old and adult rats, and several external divalent cations exerted different effects on these current types.
Abstract: TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) sodium channel currents were analyzed in acutely dissociated dorsal root ganglion (DRG) neurons isolated from 3–12-d-old and adult rats. Currents were recorded using the whole-cell patch-clamp technique. TTX-R current was more likely to be present in younger animals (3–7 d), whereas TTX-S current was more common in older animals (7–10 d), although TTX-R current was recorded from adult rat DRG neurons. The TTX-R and TTX-S currents differed in their steady-state inactivation, with 50% inactivation voltage at -40 +/- 5 mV (n = 10) for TTX-R currents and -70 +/- 4 mV (n = 10) for TTX- S currents. These current types also differed in their activation kinetics, with 50% activation values of -15 +/- 5 mV (n = 5) for TTX-R currents and -26 +/- 6 mV (n = 5) for TTX-S currents. The interactions of TTX-R and TTX-S channels with various pharmacological agents and divalent cations were studied. The Kd values for TTX-S and TTX-R currents were estimated to be 0.3 nM and 100 microM for TTX, 0.5 nM and 10 microM for saxitoxin, and 50 microM and 200 microM for lidocaine, respectively. TTX-S channels did not exhibit a marked use-dependent block by lidocaine, whereas lidocaine significantly decreased TTX-R current in a use-dependent manner at frequencies ranging from 1 to 33.3 Hz. Several external divalent cations exerted different effects on these current types.(ABSTRACT TRUNCATED AT 250 WORDS)