scispace - formally typeset
Journal ArticleDOI

A common human skin tumour is caused by activating mutations in beta-catenin.

Reads0
Chats0
TLDR
The cell origin and aetiology of human pilomatricomas is explored, and nuclear LEF-1 in the dividing tumour cells is found, providing biochemical evidence that pilom atricomas are derived from hair matrix cells.
Abstract
WNT signalling orchestrates a number of developmental programs. In response to this stimulus, cytoplasmic beta-catenin (encoded by CTNNB1) is stabilized, enabling downstream transcriptional activation by members of the LEF/TCF family. One of the target genes for beta-catenin/TCF encodes c-MYC, explaining why constitutive activation of the WNT pathway can lead to cancer, particularly in the colon. Most colon cancers arise from mutations in the gene encoding adenomatous polyposis coli (APC), a protein required for ubiquitin-mediated degradation of beta-catenin, but a small percentage of colon and some other cancers harbour beta-catenin-stabilizing mutations. Recently, we discovered that transgenic mice expressing an activated beta-catenin are predisposed to developing skin tumours resembling pilomatricomas. Given that the skin of these adult mice also exhibits signs of de novo hair-follicle morphogenesis, we wondered whether human pilomatricomas might originate from hair matrix cells and whether they might possess beta-catenin-stabilizing mutations. Here, we explore the cell origin and aetiology of this common human skin tumour. We found nuclear LEF-1 in the dividing tumour cells, providing biochemical evidence that pilomatricomas are derived from hair matrix cells. At least 75% of these tumours possess mutations affecting the amino-terminal segment, normally involved in phosphorylation-dependent, ubiquitin-mediated degradation of the protein. This percentage of CTNNB1 mutations is greater than in all other human tumours examined thus far, and directly implicates beta-catenin/LEF misregulation as the major cause of hair matrix cell tumorigenesis in humans.

read more

Citations
More filters
Journal ArticleDOI

Stem cells, cancer, and cancer stem cells

TL;DR: Stem cell biology has come of age: Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine.
Journal ArticleDOI

Wnt/beta-catenin signaling in development and disease.

TL;DR: A remarkable interdisciplinary effort has unraveled the WNT (Wingless and INT-1) signal transduction cascade over the last two decades, finding that Germline mutations in the Wnt pathway cause several hereditary diseases, and somatic mutations are associated with cancer of the intestine and a variety of other tissues.
Journal ArticleDOI

Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity.

TL;DR: Recent progress has been made in understanding the details of the signaling pathways that regulate NF-kappaB activity, particularly those responding to the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1.
Journal ArticleDOI

Wnt signalling in stem cells and cancer

TL;DR: Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.
Journal ArticleDOI

Wnt signaling and cancer

TL;DR: In this review, the wnt pathway will be covered from the perspective of cancer, with emphasis placed on molecular defects known to promote neoplastic transformation in humans and in animal models.
References
More filters
Journal ArticleDOI

Lessons from Hereditary Colorectal Cancer

TL;DR: The authors are grateful to the members of their laboratories for their contributions to the reviewed studies and to F. Giardiello and S. Hamilton for photographs of colorectal lesions.
Journal ArticleDOI

Identification of c-MYC as a Target of the APC Pathway

TL;DR: The c-MYC oncogene is identified as a target gene in this signaling pathway and shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c- MYC promoter.
Journal ArticleDOI

Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC

TL;DR: Results indicate that regulation of β-catenin is critical to APC's tumor suppressive effect and that this regulation can be circumvented by mutations in either APC or β- catenin.
Journal ArticleDOI

Functional interaction of beta-catenin with the transcription factor LEF-1.

TL;DR: β-catenin regulates gene expression by direct interaction with transcription factors such as LEF-1, providing a molecular mechanism for the transmission of signals from cell-adhesion components or wnt protein to the nucleus.
Journal ArticleDOI

Wnt signaling: a common theme in animal development

TL;DR: Current understanding of Wnt function and signaling mechanisms is reviewed in a comparative approach, highlighting novelty and underscoring questions that remain, and putting emphasis on the latest findings.
Related Papers (5)