scispace - formally typeset
Journal ArticleDOI

A Comparision of Spacing and Headway Control Laws for Automatically Controlled Vehicles1

Reads0
Chats0
TLDR
In this article, the authors investigated two different longitudinal control policies for automatically controlled vehicles, one is based on maintaining a constant spacing between the vehicles while the other is based upon maintaining the constant headway (or time) between successive vehicles.
Abstract
SUMMARY This paper investigates two different longitudinal control policies for automatically controlled vehicles. One is based on maintaining a constant spacing between the vehicles while the other is based upon maintaining a constant headway (or time) between successive vehicles. To avoid collisions in the platoon, controllers have to be designed to ensure string stability, i.e the spacing errors should not get amplified as they propagate upstream from vehicle to vehicle. A measure of string stability is introduced and a systematic method of designing constant spacing controllers which guarantee string stability is presented. The constant headway policy does not require inter-vehicle communication to assure string stablity. Also, since inter-vehicle communication is not required it can be used in systems with mixed automated-nonautomated vehicles, e.g for AICC (Autonomous Intelligent Cruise Control). It is shown in this paper that for all the autonomous headway control laws, the desired control torques ...

read more

Citations
More filters
Journal ArticleDOI

Stability analysis of swarms

TL;DR: It is shown that the individuals (autonomous agents or biological creatures) will form a cohesive swarm in a finite time and an explicit bound on the swarm size is obtained, which depends only on the parameters of the swarm model.
Journal ArticleDOI

Cooperative Adaptive Cruise Control in Real Traffic Situations

TL;DR: The design, development, implementation, and testing of a CACC system, which consists of two controllers, one to manage the approaching maneuver to the leading vehicle and the other to regulate car-following once the vehicle joins the platoon, is presented.
Journal ArticleDOI

Research advances in intelligent collision avoidance and adaptive cruise control

TL;DR: This paper explains the initiatives for automation in different levels of transportation system with a specific emphasis on the vehicle-level automation, and the impact of automation/warning systems on each of the above-mentioned factors.
Journal ArticleDOI

String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach

TL;DR: Implementation of the CACC system, the string-stability characteristics of the practical setup, and experimental results are discussed, indicating the advantages of the design over standard adaptive-cruise-control functionality.
Journal Article

Leader-to-formation stability.

TL;DR: Leader-to-formation stability (LFS) gains quantify error amplification, relate interconnection topology to stability and performance, and offer safety bounds for different formation topologies.
References
More filters
Book

Applied Nonlinear Control

TL;DR: Covers in a progressive fashion a number of analysis tools and design techniques directly applicable to nonlinear control problems in high performance systems (in aerospace, robotics and automotive areas).
Book

Theory of Ground Vehicles

J.Y. Wong
TL;DR: In this article, the authors present an approach to the prediction of normal pressure distribution under a track and a simplified method for analysis of tracked vehicle performance, based on the Cone Index.

Autonomous intelligent cruise control

TL;DR: In this paper, an autonomous intelligent cruise control (AICC) system for automatic vehicle following, examine its effect on traffic flow and compare its performance with that of the human driver models.
Journal ArticleDOI

Autonomous intelligent cruise control

TL;DR: The performance of the AICC system is found to be superior to that of the human driver models considered and has a faster and better transient response that leads to a much smoother and faster traffic flow.
Journal ArticleDOI

Automotive Powertrain Modeling for Control

TL;DR: In this article, a dynamic model of an automotive powertrain system is developed by the use of eight states and two time-delays in the continuous-time domain, with careful attention given to the dynamics and kinematics of a four-stroke spark-ignition engine, an automatic transmission, and rubber tires.
Related Papers (5)