scispace - formally typeset
Open Access

A coupled Element Free Galerkin / Boundary Element method for stress analysis of two-dimensional solids

TLDR
In this article, a coupled EFG/Boundary Element Free Galerkin (EFG) and Boundary Element Element (BE) method is proposed to improve the solution efficiency.
Abstract
Element Free Galerkin (EFG) method is a newly developed meshless method for solving partial differential equations using Moving Least Squares interpolants. It is, however, computationally expensive for many problems. A coupled EFG/Boundary Element (BE) method is proposed in this paper to improve the solution efficiency. A procedure is developed for the coupled EFG/BE method so that the continuity and compatibility are preserved on the interface of the two domains where the EFG and BE methods are applied. The present coupled EFG/BE method has been coded in FORTRAN. The validity and efficiency of the EFG/BE method are demonstrated through a number of examples. It is found that the present method can take the full advantages of both EFG and BE methods. It is very easy to implement, and very flexible for computing displacements and stresses of desired accuracy in solids with or without infinite domains.

read more

Content maybe subject to copyright    Report

Citations
More filters

A local point interpolation method (LPIM) for static and dynamic analysis of thin beams

YuanTong Gu, +1 more
TL;DR: In this article, a new LPIM formulation is proposed to deal with 4th order boundary-value and initial-value problems for static and dynamic analysis (stability, free vibration and forced vibration) of beams.
References
More filters
Book

Theory of elasticity

TL;DR: The theory of the slipline field is used in this article to solve the problem of stable and non-stressed problems in plane strains in a plane-strain scenario.
Book

The finite element method

TL;DR: In this article, the methodes are numeriques and the fonction de forme reference record created on 2005-11-18, modified on 2016-08-08.
Journal ArticleDOI

Element‐free Galerkin methods

TL;DR: In this article, an element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems, where moving least-squares interpolants are used to construct the trial and test functions for the variational principle.
Journal ArticleDOI

Surfaces generated by moving least squares methods

TL;DR: In this article, an analysis of moving least squares (m.l.s.) methods for smoothing and interpolating scattered data is presented, in particular theorems concerning the smoothness of interpolants and the description of m. l.s. processes as projection methods.
Related Papers (5)