A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data
TL;DR: This paper presents a general framework in which the structural learning problem can be formulated and analyzed theoretically, and relate it to learning with unlabeled data, and algorithms for structural learning will be proposed, and computational issues will be investigated.
Abstract: One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semi-supervised learning. Although a number of such methods are proposed, at the current stage, we still don't have a complete understanding of their effectiveness. This paper investigates a closely related problem, which leads to a novel approach to semi-supervised learning. Specifically we consider learning predictive structures on hypothesis spaces (that is, what kind of classifiers have good predictive power) from multiple learning tasks. We present a general framework in which the structural learning problem can be formulated and analyzed theoretically, and relate it to learning with unlabeled data. Under this framework, algorithms for structural learning will be proposed, and computational issues will be investigated. Experiments will be given to demonstrate the effectiveness of the proposed algorithms in the semi-supervised learning setting.
Content maybe subject to copyright Report
Citations
More filters
[...]
TL;DR: BERT as mentioned in this paper pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
24,672 citations
Book•
[...]
TL;DR: This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems and focuses on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis.
Abstract: An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people now can, and do, actively use information technologies to seek out and understand the opinions of others. The sudden eruption of activity in the area of opinion mining and sentiment analysis, which deals with the computational treatment of opinion, sentiment, and subjectivity in text, has thus occurred at least in part as a direct response to the surge of interest in new systems that deal directly with opinions as a first-class object.
This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. Our focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. We include material on summarization of evaluative text and on broader issues regarding privacy, manipulation, and economic impact that the development of opinion-oriented information-access services gives rise to. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided.
7,180 citations
Cites methods from "A Framework for Learning Predictive..."
[...]
Book•
[...]
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
7,045 citations
Journal Article•
[...]
TL;DR: A unified neural network architecture and learning algorithm that can be applied to various natural language processing tasks including part-of-speech tagging, chunking, named entity recognition, and semantic role labeling is proposed.
Abstract: We propose a unified neural network architecture and learning algorithm that can be applied to various natural language processing tasks including part-of-speech tagging, chunking, named entity recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made input features carefully optimized for each task, our system learns internal representations on the basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for building a freely available tagging system with good performance and minimal computational requirements.
6,727 citations
[...]
TL;DR: This work describes a single convolutional neural network architecture that, given a sentence, outputs a host of language processing predictions: part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar words and the likelihood that the sentence makes sense using a language model.
Abstract: We describe a single convolutional neural network architecture that, given a sentence, outputs a host of language processing predictions: part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar words and the likelihood that the sentence makes sense (grammatically and semantically) using a language model. The entire network is trained jointly on all these tasks using weight-sharing, an instance of multitask learning. All the tasks use labeled data except the language model which is learnt from unlabeled text and represents a novel form of semi-supervised learning for the shared tasks. We show how both multitask learning and semi-supervised learning improve the generalization of the shared tasks, resulting in state-of-the-art-performance.
5,098 citations
Cites background from "A Framework for Learning Predictive..."
[...]
[...]
References
More filters
[...]
01 Jan 1998
TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Abstract: A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
26,121 citations
"A Framework for Learning Predictive..." refers background in this paper
[...]
[...]
TL;DR: Chapter 11 includes more case studies in other areas, ranging from manufacturing to marketing research, and a detailed comparison with other diagnostic tools, such as logistic regression and tree-based methods.
Abstract: Chapter 11 includes more case studies in other areas, ranging from manufacturing to marketing research. Chapter 12 concludes the book with some commentary about the scienti c contributions of MTS. The Taguchi method for design of experiment has generated considerable controversy in the statistical community over the past few decades. The MTS/MTGS method seems to lead another source of discussions on the methodology it advocates (Montgomery 2003). As pointed out by Woodall et al. (2003), the MTS/MTGS methods are considered ad hoc in the sense that they have not been developed using any underlying statistical theory. Because the “normal” and “abnormal” groups form the basis of the theory, some sampling restrictions are fundamental to the applications. First, it is essential that the “normal” sample be uniform, unbiased, and/or complete so that a reliable measurement scale is obtained. Second, the selection of “abnormal” samples is crucial to the success of dimensionality reduction when OAs are used. For example, if each abnormal item is really unique in the medical example, then it is unclear how the statistical distance MD can be guaranteed to give a consistent diagnosis measure of severity on a continuous scale when the larger-the-better type S/N ratio is used. Multivariate diagnosis is not new to Technometrics readers and is now becoming increasingly more popular in statistical analysis and data mining for knowledge discovery. As a promising alternative that assumes no underlying data model, The Mahalanobis–Taguchi Strategy does not provide suf cient evidence of gains achieved by using the proposed method over existing tools. Readers may be very interested in a detailed comparison with other diagnostic tools, such as logistic regression and tree-based methods. Overall, although the idea of MTS/MTGS is intriguing, this book would be more valuable had it been written in a rigorous fashion as a technical reference. There is some lack of precision even in several mathematical notations. Perhaps a follow-up with additional theoretical justi cation and careful case studies would answer some of the lingering questions.
8,899 citations
"A Framework for Learning Predictive..." refers methods in this paper
[...]
[...]
TL;DR: A PAC-style analysis is provided for a problem setting motivated by the task of learning to classify web pages, in which the description of each example can be partitioned into two distinct views, to allow inexpensive unlabeled data to augment, a much smaller set of labeled examples.
Abstract: We consider the problem of using a large unlabeled sample to boost performance of a learning algorit,hrn when only a small set of labeled examples is available. In particular, we consider a problem setting motivated by the task of learning to classify web pages, in which the description of each example can be partitioned into two distinct views. For example, the description of a web page can be partitioned into the words occurring on that page, and the words occurring in hyperlinks t,hat point to that page. We assume that either view of the example would be sufficient for learning if we had enough labeled data, but our goal is to use both views together to allow inexpensive unlabeled data to augment, a much smaller set of labeled examples. Specifically, the presence of two distinct views of each example suggests strategies in which two learning algorithms are trained separately on each view, and then each algorithm’s predictions on new unlabeled examples are used to enlarge the training set of the other. Our goal in this paper is to provide a PAC-style analysis for this setting, and, more broadly, a PAC-style framework for the general problem of learning from both labeled and unlabeled data. We also provide empirical results on real web-page data indicating that this use of unlabeled examples can lead to significant improvement of hypotheses in practice. *This research was supported in part by the DARPA HPKB program under contract F30602-97-1-0215 and by NSF National Young investigator grant CCR-9357793. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. TO copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. COLT 98 Madison WI USA Copyright ACM 1998 l-58113-057--0/98/ 7...%5.00 92 Tom Mitchell School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3891 mitchell+@cs.cmu.edu
5,359 citations
"A Framework for Learning Predictive..." refers methods in this paper
[...]
[...]
[...]
Book•
[...]
14 Mar 1996
TL;DR: In this article, the authors define the Ball Sigma-Field and Measurability of Suprema and show that it is possible to achieve convergence almost surely and in probability.
Abstract: 1.1. Introduction.- 1.2. Outer Integrals and Measurable Majorants.- 1.3. Weak Convergence.- 1.4. Product Spaces.- 1.5. Spaces of Bounded Functions.- 1.6. Spaces of Locally Bounded Functions.- 1.7. The Ball Sigma-Field and Measurability of Suprema.- 1.8. Hilbert Spaces.- 1.9. Convergence: Almost Surely and in Probability.- 1.10. Convergence: Weak, Almost Uniform, and in Probability.- 1.11. Refinements.- 1.12. Uniformity and Metrization.- 2.1. Introduction.- 2.2. Maximal Inequalities and Covering Numbers.- 2.3. Symmetrization and Measurability.- 2.4. Glivenko-Cantelli Theorems.- 2.5. Donsker Theorems.- 2.6. Uniform Entropy Numbers.- 2.7. Bracketing Numbers.- 2.8. Uniformity in the Underlying Distribution.- 2.9. Multiplier Central Limit Theorems.- 2.10. Permanence of the Donsker Property.- 2.11. The Central Limit Theorem for Processes.- 2.12. Partial-Sum Processes.- 2.13. Other Donsker Classes.- 2.14. Tail Bounds.- 3.1. Introduction.- 3.2. M-Estimators.- 3.3. Z-Estimators.- 3.4. Rates of Convergence.- 3.5. Random Sample Size, Poissonization and Kac Processes.- 3.6. The Bootstrap.- 3.7. The Two-Sample Problem.- 3.8. Independence Empirical Processes.- 3.9. The Delta-Method.- 3.10. Contiguity.- 3.11. Convolution and Minimax Theorems.- A. Appendix.- A.1. Inequalities.- A.2. Gaussian Processes.- A.2.1. Inequalities and Gaussian Comparison.- A.2.2. Exponential Bounds.- A.2.3. Majorizing Measures.- A.2.4. Further Results.- A.3. Rademacher Processes.- A.4. Isoperimetric Inequalities for Product Measures.- A.5. Some Limit Theorems.- A.6. More Inequalities.- A.6.1. Binomial Random Variables.- A.6.2. Multinomial Random Vectors.- A.6.3. Rademacher Sums.- Notes.- References.- Author Index.- List of Symbols.
5,229 citations
Related Papers (5)
[...]
[...]
[...]