scispace - formally typeset
Open AccessJournal ArticleDOI

A front-tracking method for viscous, incompressible, multi-fluid flows

TLDR
In this paper, a method to simulate unsteady multi-fluid flows in which a sharp interface or a front separates incompressible fluids of different density and viscosity is described.
About
This article is published in Journal of Computational Physics.The article was published on 1992-05-01 and is currently open access. It has received 2340 citations till now. The article focuses on the topics: Incompressible flow & Unstructured grid.

read more

Citations
More filters
Journal ArticleDOI

A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains

TL;DR: The Ghost Fluid Method (GFM) as discussed by the authors was developed to capture the boundary conditions at a contact discontinuity in the inviscid Euler equations and has been extended to treat more general discontinuities such as shocks, detonations, and deflagrations and compressible viscous flows.
Proceedings ArticleDOI

Animation and rendering of complex water surfaces

TL;DR: A new "thickened" front tracking technique to accurately represent the water surface and a new velocity extrapolation method to move the surface in a smooth, water-like manner are introduced.
Book

Direct Numerical Simulations of Gas-Liquid Multiphase Flows

TL;DR: In this paper, a review of the state-of-the-art numerical methods used for direct numerical simulations of multiphase flows, with a particular emphasis on methods that use the so-called "one-field" formulation of the governing equations, is presented.
Journal ArticleDOI

A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies

TL;DR: In this paper, a numerical method is developed for solving the Navier-Stokes equations in Cartesian domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics.
Journal ArticleDOI

Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid Part 1. Sedimentation

TL;DR: In this article, the initial value problem for the sedimentation of circular and elliptical particles in a vertical channel is solved for the Navier-Stokes equations for moderate Reynolds numbers in the hundreds.
References
More filters
Journal ArticleDOI

Volume of fluid (VOF) method for the dynamics of free boundaries

TL;DR: In this paper, the concept of a fractional volume of fluid (VOF) has been used to approximate free boundaries in finite-difference numerical simulations, which is shown to be more flexible and efficient than other methods for treating complicated free boundary configurations.
Journal ArticleDOI

Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface

TL;DR: In this paper, a new technique is described for the numerical investigation of the time-dependent flow of an incompressible fluid, the boundary of which is partially confined and partially free The full Navier-Stokes equations are written in finite-difference form, and the solution is accomplished by finite-time step advancement.
Journal Article

Bubbles, Drops, and Particles

TL;DR: In this paper, the authors evaluated the applicability of the standard κ-ϵ equations and other turbulence models with respect to their applicability in swirling, recirculating flows.
Journal ArticleDOI

Numerical analysis of blood flow in the heart

TL;DR: In this article, the authors extended previous work on the solution of the Navier-Stokes equations in the presence of moving immersed boundaries which interact with the fluid and introduced an improved numerical representation of the δ-function.
Related Papers (5)