scispace - formally typeset
Open AccessJournal ArticleDOI

A front-tracking method for viscous, incompressible, multi-fluid flows

TLDR
In this paper, a method to simulate unsteady multi-fluid flows in which a sharp interface or a front separates incompressible fluids of different density and viscosity is described.
About
This article is published in Journal of Computational Physics.The article was published on 1992-05-01 and is currently open access. It has received 2340 citations till now. The article focuses on the topics: Incompressible flow & Unstructured grid.

read more

Citations
More filters
Journal ArticleDOI

Level set methods for fluid interfaces

TL;DR: An overview of level set methods, introduced by Osher and Sethian, for computing the solution to fluid-interface problems, which are computational techniques that rely on an implicit formulation of the interface, represented through a time-dependent initial-value partial-differential equation.
Journal ArticleDOI

Quasi–incompressible Cahn–Hilliard fluids and topological transitions

TL;DR: In this article, a physically motivated regularization of the Euler equations is proposed to allow topological transitions to occur smoothly, where the sharp interface is replaced by a narrow transition layer across which the fluids may mix.
Journal ArticleDOI

A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows

TL;DR: Eulerian finite difference methods based on a level set formulation derived for incompressible, immiscible Navier?Stokes equations are proposed and are capable of computing interface singularities such as merging and reconnection.
Journal ArticleDOI

A diffuse-interface method for simulating two-phase flows of complex fluids

TL;DR: In this paper, the authors proposed a diffuse-interface approach to simulating the flow of two-phase systems of microstructured complex fluids, where the energy law of the system guarantees the existence of a solution.
Journal ArticleDOI

An improved level set method for incompressible two-phase flows

TL;DR: A level set method for capturing the interface between two fluids is combined with a variable density projection method to allow for computation of a two-phase flow where the interface can merge/break and the flow can have a high Reynolds number.
References
More filters
Journal ArticleDOI

Volume of fluid (VOF) method for the dynamics of free boundaries

TL;DR: In this paper, the concept of a fractional volume of fluid (VOF) has been used to approximate free boundaries in finite-difference numerical simulations, which is shown to be more flexible and efficient than other methods for treating complicated free boundary configurations.
Journal ArticleDOI

Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface

TL;DR: In this paper, a new technique is described for the numerical investigation of the time-dependent flow of an incompressible fluid, the boundary of which is partially confined and partially free The full Navier-Stokes equations are written in finite-difference form, and the solution is accomplished by finite-time step advancement.
Journal Article

Bubbles, Drops, and Particles

TL;DR: In this paper, the authors evaluated the applicability of the standard κ-ϵ equations and other turbulence models with respect to their applicability in swirling, recirculating flows.
Journal ArticleDOI

Numerical analysis of blood flow in the heart

TL;DR: In this article, the authors extended previous work on the solution of the Navier-Stokes equations in the presence of moving immersed boundaries which interact with the fluid and introduced an improved numerical representation of the δ-function.
Related Papers (5)