scispace - formally typeset
Journal ArticleDOI

A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel

Reads0
Chats0
TLDR
This paper presents an alternative characterization of the secrecy capacity of the multiple-antenna wiretap channel under a more general matrix constraint on the channel input using a channel-enhancement argument.
Abstract
The secrecy capacity of the multiple-antenna wiretap channel under the average total power constraint was recently characterized, independently, by Khisti and Wornell and Oggier and Hassibi using a Sato-like argument and matrix analysis tools. This paper presents an alternative characterization of the secrecy capacity of the multiple-antenna wiretap channel under a more general matrix constraint on the channel input using a channel-enhancement argument. This characterization is by nature information-theoretic and is directly built on the intuition regarding to the optimal transmission strategy in this communication scenario.

read more

Citations
More filters
Journal ArticleDOI

Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel

TL;DR: The role of multiple antennas for secure communication is investigated within the framework of Wyner's wiretap channel, and a masked beamforming scheme that radiates power isotropically in all directions attains near-optimal performance in the high SNR regime.
Journal ArticleDOI

Improving Wireless Physical Layer Security via Cooperating Relays

TL;DR: Novel system designs are proposed, consisting of the determination of relay weights and the allocation of transmit power, that maximize the achievable secrecy rate subject to a transmit power constraint, or minimize the transmit powersubject to a secrecy rate constraint.
Journal ArticleDOI

Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

TL;DR: A comprehensive review of the domain of physical layer security in multiuser wireless networks, with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security and observations on potential research directions in this area.
Journal ArticleDOI

Secure Communication Over Fading Channels

TL;DR: In this article, the secrecy capacity region of the fading broadcast channel with confidential messages (BCC) was investigated, where a source node has common information for two receivers (receivers 1 and 2), and has confidential information intended only for receiver 1.
Book

Information Theoretic Security

TL;DR: Information Theoretic Security surveys the research dating back to the 1970s which forms the basis of applying this technique in modern systems to achieve secrecy for a basic wire-tap channel model as well as for its extensions to multiuser networks.
References
More filters
Book

Elements of information theory

TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Book

Fundamentals of Wireless Communication

TL;DR: In this paper, the authors propose a multiuser communication architecture for point-to-point wireless networks with additive Gaussian noise detection and estimation in the context of MIMO networks.
Journal ArticleDOI

The wire-tap channel

TL;DR: This paper finds the trade-off curve between R and d, assuming essentially perfect (“error-free”) transmission, and implies that there exists a Cs > 0, such that reliable transmission at rates up to Cs is possible in approximately perfect secrecy.
Journal ArticleDOI

Broadcast channels with confidential messages

TL;DR: Given two discrete memoryless channels (DMC's) with a common input, a single-letter characterization is given of the achievable triples where R_{e} is the equivocation rate and the related source-channel matching problem is settled.
Journal ArticleDOI

The Gaussian wire-tap channel

TL;DR: Wyner's results for discrete memoryless wire-tap channels are extended and it is shown that the secrecy capacity Cs is the difference between the capacities of the main and wire.tap channels.
Related Papers (5)