scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Communications Surveys and Tutorials in 2014"


Journal ArticleDOI
TL;DR: This paper surveys context awareness from an IoT perspective and addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT.
Abstract: As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.

2,542 citations


Journal ArticleDOI
TL;DR: The SDN architecture and the OpenFlow standard in particular are presented, current alternatives for implementation and testing of SDN-based protocols and services are discussed, current and future SDN applications are examined, and promising research directions based on the SDN paradigm are explored.
Abstract: The idea of programmable networks has recently re-gained considerable momentum due to the emergence of the Software-Defined Networking (SDN) paradigm. SDN, often referred to as a ''radical new idea in networking'', promises to dramatically simplify network management and enable innovation through network programmability. This paper surveys the state-of-the-art in programmable networks with an emphasis on SDN. We provide a historic perspective of programmable networks from early ideas to recent developments. Then we present the SDN architecture and the OpenFlow standard in particular, discuss current alternatives for implementation and testing of SDN-based protocols and services, examine current and future SDN applications, and explore promising research directions based on the SDN paradigm.

2,013 citations


Journal ArticleDOI
TL;DR: This paper provides a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy to provide new insights into the over-explored and under- Explored areas that lead to identify open research problems of D1D communications in cellular networks.
Abstract: Device-to-device (D2D) communications was initially proposed in cellular networks as a new paradigm for enhancing network performance. The emergence of new applications such as content distribution and location-aware advertisement introduced new user cases for D2D communications in cellular networks. The initial studies showed that D2D communications has advantages such as increased spectral efficiency and reduced communication delay. However, this communication mode introduces complications in terms of interference control overhead and protocols that are still open research problems. The feasibility of D2D communications in Long-Term Evolution Advanced is being studied by academia, industry, and standardization bodies. To date, there are more than 100 papers available on D2D communications in cellular networks, but there is no survey on this field. In this paper, we provide a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy. Moreover, we provide new insights into the over-explored and under-explored areas that lead us to identify open research problems of D2D communications in cellular networks.

1,784 citations


Journal ArticleDOI
TL;DR: An up-to-date survey on FSO communication systems is presented, describing FSO channel models and transmitter/receiver structures and details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits are provided.
Abstract: Optical wireless communication (OWC) refers to transmission in unguided propagation media through the use of optical carriers, i.e., visible, infrared (IR), and ultraviolet (UV) bands. In this survey, we focus on outdoor terrestrial OWC links which operate in near IR band. These are widely referred to as free space optical (FSO) communication in the literature. FSO systems are used for high rate communication between two fixed points over distances up to several kilometers. In comparison to radio-frequency (RF) counterparts, FSO links have a very high optical bandwidth available, allowing much higher data rates. They are appealing for a wide range of applications such as metropolitan area network (MAN) extension, local area network (LAN)-to-LAN connectivity, fiber back-up, backhaul for wireless cellular networks, disaster recovery, high definition TV and medical image/video transmission, wireless video surveillance/monitoring, and quantum key distribution among others. Despite the major advantages of FSO technology and variety of its application areas, its widespread use has been hampered by its rather disappointing link reliability particularly in long ranges due to atmospheric turbulence-induced fading and sensitivity to weather conditions. In the last five years or so, there has been a surge of interest in FSO research to address these major technical challenges. Several innovative physical layer concepts, originally introduced in the context of RF systems, such as multiple-input multiple-output communication, cooperative diversity, and adaptive transmission have been recently explored for the design of next generation FSO systems. In this paper, we present an up-to-date survey on FSO communication systems. The first part describes FSO channel models and transmitter/receiver structures. In the second part, we provide details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits. Specific topics include advances in modulation, channel coding, spatial/cooperative diversity techniques, adaptive transmission, and hybrid RF/FSO systems.

1,749 citations


Journal ArticleDOI
TL;DR: A survey of the core functionalities of Information-Centric Networking (ICN) architectures to identify the key weaknesses of ICN proposals and to outline the main unresolved research challenges in this area of networking research.
Abstract: The current Internet architecture was founded upon a host-centric communication model, which was appropriate for coping with the needs of the early Internet users. Internet usage has evolved however, with most users mainly interested in accessing (vast amounts of) information, irrespective of its physical location. This paradigm shift in the usage model of the Internet, along with the pressing needs for, among others, better security and mobility support, has led researchers into considering a radical change to the Internet architecture. In this direction, we have witnessed many research efforts investigating Information-Centric Networking (ICN) as a foundation upon which the Future Internet can be built. Our main aims in this survey are: (a) to identify the core functionalities of ICN architectures, (b) to describe the key ICN proposals in a tutorial manner, highlighting the similarities and differences among them with respect to those core functionalities, and (c) to identify the key weaknesses of ICN proposals and to outline the main unresolved research challenges in this area of networking research.

1,408 citations


Journal ArticleDOI
TL;DR: The current state-of-art of WBANs is surveyed based on the latest standards and publications, and open issues and challenges within each area are explored as a source of inspiration towards future developments inWBANs.
Abstract: Recent developments and technological advancements in wireless communication, MicroElectroMechanical Systems (MEMS) technology and integrated circuits has enabled low-power, intelligent, miniaturized, invasive/non-invasive micro and nano-technology sensor nodes strategically placed in or around the human body to be used in various applications, such as personal health monitoring. This exciting new area of research is called Wireless Body Area Networks (WBANs) and leverages the emerging IEEE 802.15.6 and IEEE 802.15.4j standards, specifically standardized for medical WBANs. The aim of WBANs is to simplify and improve speed, accuracy, and reliability of communication of sensors/actuators within, on, and in the immediate proximity of a human body. The vast scope of challenges associated with WBANs has led to numerous publications. In this paper, we survey the current state-of-art of WBANs based on the latest standards and publications. Open issues and challenges within each area are also explored as a source of inspiration towards future developments in WBANs.

1,359 citations


Journal ArticleDOI
TL;DR: A comprehensive review of the domain of physical layer security in multiuser wireless networks, with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security and observations on potential research directions in this area.
Abstract: This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers, without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical layer message authentication is also briefly introduced. The survey concludes with observations on potential research directions in this area.

1,294 citations


Journal ArticleDOI
TL;DR: This paper provides a structured and comprehensive overview of various facets of network anomaly detection so that a researcher can become quickly familiar with every aspect of network anomalies detection.
Abstract: Network anomaly detection is an important and dynamic research area. Many network intrusion detection methods and systems (NIDS) have been proposed in the literature. In this paper, we provide a structured and comprehensive overview of various facets of network anomaly detection so that a researcher can become quickly familiar with every aspect of network anomaly detection. We present attacks normally encountered by network intrusion detection systems. We categorize existing network anomaly detection methods and systems based on the underlying computational techniques used. Within this framework, we briefly describe and compare a large number of network anomaly detection methods and systems. In addition, we also discuss tools that can be used by network defenders and datasets that researchers in network anomaly detection can use. We also highlight research directions in network anomaly detection.

971 citations


Journal ArticleDOI
TL;DR: A survey of the state-of-the-art in Intrusion Detection Systems (IDSs) that are proposed for WSNs is presented, followed by the analysis and comparison of each scheme along with their advantages and disadvantages.
Abstract: Wireless Sensor Networking is one of the most promising technologies that have applications ranging from health care to tactical military. Although Wireless Sensor Networks (WSNs) have appealing features (e.g., low installation cost, unattended network operation), due to the lack of a physical line of defense (i.e., there are no gateways or switches to monitor the information flow), the security of such networks is a big concern, especially for the applications where confidentiality has prime importance. Therefore, in order to operate WSNs in a secure way, any kind of intrusions should be detected before attackers can harm the network (i.e., sensor nodes) and/or information destination (i.e., data sink or base station). In this article, a survey of the state-of-the-art in Intrusion Detection Systems (IDSs) that are proposed for WSNs is presented. Firstly, detailed information about IDSs is provided. Secondly, a brief survey of IDSs proposed for Mobile Ad-Hoc Networks (MANETs) is presented and applicability of those systems to WSNs are discussed. Thirdly, IDSs proposed for WSNs are presented. This is followed by the analysis and comparison of each scheme along with their advantages and disadvantages. Finally, guidelines on IDSs that are potentially applicable to WSNs are provided. Our survey is concluded by highlighting open research issues in the field.

743 citations


Journal ArticleDOI
TL;DR: An extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in WSNs is presented and a comparative guide is provided to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.
Abstract: Wireless sensor networks (WSNs) monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002–2013 of machine learning methods that were used to address common issues in WSNs. The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.

704 citations


Journal ArticleDOI
TL;DR: The mobile cloud architecture, offloading decision affecting entities, application models classification, the latest mobile cloud application models, their critical analysis and future research directions are presented.
Abstract: Smart phones are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. This poses a challenge because smart phones are resource-constrained devices with limited computation power, memory, storage, and energy. Fortunately, the cloud computing technology offers virtually unlimited dynamic resources for computation, storage, and service provision. Therefore, researchers envision extending cloud computing services to mobile devices to overcome the smartphones constraints. The challenge in doing so is that the traditional smartphone application models do not support the development of applications that can incorporate cloud computing features and requires specialized mobile cloud application models. This article presents mobile cloud architecture, offloading decision affecting entities, application models classification, the latest mobile cloud application models, their critical analysis and future research directions.

Journal ArticleDOI
TL;DR: A comprehensive survey of the important topics in SDN/OpenFlow implementation, including the basic concept, applications, language abstraction, controller, virtualization, quality of service, security, and its integration with wireless and optical networks is conducted.
Abstract: Software-defined network (SDN) has become one of the most important architectures for the management of largescale complex networks, which may require repolicing or reconfigurations from time to time. SDN achieves easy repolicing by decoupling the control plane from data plane. Thus, the network routers/switches just simply forward packets by following the flow table rules set by the control plane. Currently, OpenFlow is the most popular SDN protocol/standard and has a set of design specifications. Although SDN/OpenFlow is a relatively new area, it has attracted much attention from both academia and industry. In this paper, we will conduct a comprehensive survey of the important topics in SDN/OpenFlow implementation, including the basic concept, applications, language abstraction, controller, virtualization, quality of service, security, and its integration with wireless and optical networks. We will compare the pros and cons of different schemes and discuss the future research trends in this exciting area. This survey can help both industry and academia R&D people to understand the latest progress of SDN/OpenFlow designs.

Journal ArticleDOI
TL;DR: An overview of WBAN main applications, technologies and standards, issues in WBANs design, and evolutions is reported, with the aim of providing useful insights for WBAN designers and of highlighting the main issues affecting the performance of these kind of networks.
Abstract: Interest in Wireless Body Area Networks (WBANs) has increased significantly in recent years thanks to the advances in microelectronics and wireless communications. Owing to the very stringent application requirements in terms of reliability, energy efficiency, and low device complexity, the design of these networks requires the definition of new protocols with respect to those used in general purpose wireless sensor networks. This motivates the effort in research activities and in standardisation process of the last years. This survey paper aims at reporting an overview of WBAN main applications, technologies and standards, issues in WBANs design, and evolutions. Some case studies are reported, based on both real implementation and experimentation on the field, and on simulations. These results have the aim of providing useful insights for WBAN designers and of highlighting the main issues affecting the performance of these kind of networks.

Journal ArticleDOI
TL;DR: This paper defines MCC, explains its major challenges, discusses heterogeneity in convergent computing and networking, and divides it into two dimensions, namely vertical and horizontal.
Abstract: The unabated flurry of research activities to augment various mobile devices by leveraging heterogeneous cloud resources has created a new research domain called Mobile Cloud Computing (MCC). In the core of such a non-uniform environment, facilitating interoperability, portability, and integration among heterogeneous platforms is nontrivial. Building such facilitators in MCC requires investigations to understand heterogeneity and its challenges over the roots. Although there are many research studies in mobile computing and cloud computing, convergence of these two areas grants further academic efforts towards flourishing MCC. In this paper, we define MCC, explain its major challenges, discuss heterogeneity in convergent computing (i.e. mobile computing and cloud computing) and networking (wired and wireless networks), and divide it into two dimensions, namely vertical and horizontal. Heterogeneity roots are analyzed and taxonomized as hardware, platform, feature, API, and network. Multidimensional heterogeneity in MCC results in application and code fragmentation problems that impede development of cross-platform mobile applications which is mathematically described. The impacts of heterogeneity in MCC are investigated, related opportunities and challenges are identified, and predominant heterogeneity handling approaches like virtualization, middleware, and service oriented architecture (SOA) are discussed. We outline open issues that help in identifying new research directions in MCC.

Journal ArticleDOI
TL;DR: The challenges facing the large scale deployment of OpenFlow-based networks are described, the future research directions of this technology are discussed and it is discussed that software-based traffic analysis, centralized control, dynamic updating of forwarding rules and flow abstraction are to be considered.
Abstract: OpenFlow is currently the most commonly deployed Software Defined Networking (SDN) technology. SDN consists of decoupling the control and data planes of a network. A software-based controller is responsible for managing the forwarding information of one or more switches; the hardware only handles the forwarding of traffic according to the rules set by the controller. OpenFlow is an SDN technology proposed to standardize the way that a controller communicates with network devices in an SDN architecture. It was proposed to enable researchers to test new ideas in a production environment. OpenFlow provides a specification to migrate the control logic from a switch into the controller. It also defines a protocol for the communication between the controller and the switches. As discussed in this survey paper, OpenFlow-based architectures have specific capabilities that can be exploited by researchers to experiment with new ideas and test novel applications. These capabilities include software-based traffic analysis, centralized control, dynamic updating of forwarding rules and flow abstraction. OpenFlow-based applications have been proposed to ease the configuration of a network, to simplify network management and to add security features, to virtualize networks and data centers and to deploy mobile systems. These applications run on top of networking operating systems such as Nox, Beacon, Maestro, Floodlight, Trema or Node.Flow. Larger scale OpenFlow infrastructures have been deployed to allow the research community to run experiments and test their applications in more realistic scenarios. Also, studies have measured the performance of OpenFlow networks through modelling and experimentation. We describe the challenges facing the large scale deployment of OpenFlow-based networks and we discuss future research directions of this technology.

Journal ArticleDOI
TL;DR: This paper begins with a discussion of the IoT, then a brief review of the features of "data from IoT" and "data mining for IoT' is given, and changes, potentials, open issues, and future trends of this field are addressed.
Abstract: It sounds like mission impossible to connect everything on the Earth together via Internet, but Internet of Things (IoT) will dramatically change our life in the foreseeable future, by making many "impossibles" possible. To many, the massive data generated or captured by IoT are considered having highly useful and valuable information. Data mining will no doubt play a critical role in making this kind of system smart enough to provide more convenient services and environments. This paper begins with a discussion of the IoT. Then, a brief review of the features of "data from IoT" and "data mining for IoT' is given. Finally, changes, potentials, open issues, and future trends of this field are addressed.

Journal ArticleDOI
TL;DR: A survey of the alternatives that have been proposed over the last years to improve the operation of the random access channel of LTE and LTE-A is provided, identifying strengths and weaknesses of each one of them, while drawing future trends to steer the efforts over the same shooting line.
Abstract: The 3GPP has raised the need to revisit the design of next generations of cellular networks in order to make them capable and efficient to provide M2M services. One of the key challenges that has been identified is the need to enhance the operation of the random access channel of LTE and LTE-A. The current mechanism to request access to the system is known to suffer from congestion and overloading in the presence of a huge number of devices. For this reason, different research groups around the globe are working towards the design of more efficient ways of managing the access to these networks in such circumstances. This paper aims to provide a survey of the alternatives that have been proposed over the last years to improve the operation of the random access channel of LTE and LTE-A. A comprehensive discussion of the different alternatives is provided, identifying strengths and weaknesses of each one of them, while drawing future trends to steer the efforts over the same shooting line. In addition, while existing literature has been focused on the performance in terms of delay, the energy efficiency of the access mechanism of LTE will play a key role in the deployment of M2M networks. For this reason, a comprehensive performance evaluation of the energy efficiency of the random access mechanism of LTE is provided in this paper. The aim of this computer-based simulation study is to set a baseline performance upon which new and more energy-efficient mechanisms can be designed in the near future.

Journal ArticleDOI
TL;DR: This paper aims to present some of the most representative threats to the smart home/smart grid environment and presents promising security countermeasures with respect to the identified specific security goals for each presented scenario.
Abstract: The electricity industry is now at the verge of a new era—an era that promises, through the evolution of the existing electrical grids to smart grids, more efficient and effective power management, better reliability, reduced production costs, and more environmentally friendly energy generation. Numerous initiatives across the globe, led by both industry and academia, reflect the mounting interest around not only the enormous benefits but also the great risks introduced by this evolution. This paper focuses on issues related to the security of the smart grid and the smart home, which we present as an integral part of the smart grid. Based on several scenarios, we aim to present some of the most representative threats to the smart home/smart grid environment. The threats detected are categorized according to specific security goals set for the smart home/smart grid environment, and their impact on the overall system security is evaluated. A review of contemporary literature is then conducted with the aim of presenting promising security countermeasures with respect to the identified specific security goals for each presented scenario. An effort to shed light on open issues and future research directions concludes this paper.

Journal ArticleDOI
TL;DR: The objectives of this study are to highlight the effects of remote resources on the quality and reliability of augmentation processes and discuss the challenges and opportunities of employing varied cloud-based resources in augmenting mobile devices.
Abstract: Recently, Cloud-based Mobile Augmentation (CMA) approaches have gained remarkable ground from academia and industry. CMA is the state-of-the-art mobile augmentation model that employs resource-rich clouds to increase, enhance, and optimize computing capabilities of mobile devices aiming at execution of resource-intensive mobile applications. Augmented mobile devices envision to perform extensive computations and to store big data beyond their intrinsic capabilities with least footprint and vulnerability. Researchers utilize varied cloud-based computing resources (e.g., distant clouds and nearby mobile nodes) to meet various computing requirements of mobile users. However, employing cloud-based computing resources is not a straightforward panacea. Comprehending critical factors (e.g., current state of mobile client and remote resources) that impact on augmentation process and optimum selection of cloud-based resource types are some challenges that hinder CMA adaptability. This paper comprehensively surveys the mobile augmentation domain and presents taxonomy of CMA approaches. The objectives of this study is to highlight the effects of remote resources on the quality and reliability of augmentation processes and discuss the challenges and opportunities of employing varied cloud-based resources in augmenting mobile devices. We present augmentation definition, motivation, and taxonomy of augmentation types, including traditional and cloud-based. We critically analyze the state-of-the-art CMA approaches and classify them into four groups of distant fixed, proximate fixed, proximate mobile, and hybrid to present a taxonomy. Vital decision making and performance limitation factors that influence on the adoption of CMA approaches are introduced and an exemplary decision making flowchart for future CMA approaches are presented. Impacts of CMA approaches on mobile computing is discussed and open challenges are presented as the future research directions.

Journal ArticleDOI
TL;DR: This review discusses the most relevant studies on electric demand prediction over the last 40 years, and presents the different models used as well as the future trends, and analyzes the latest studies on demand forecasting in the future environments that emerge from the usage of smart grids.
Abstract: Recently there has been a significant proliferation in the use of forecasting techniques, mainly due to the increased availability and power of computation systems and, in particular, to the usage of personal computers. This is also true for power network systems, where energy demand forecasting has been an important field in order to allow generation planning and adaptation. Apart from the quantitative progression, there has also been a change in the type of models proposed and used. In the `70s, the usage of non-linear techniques was generally not popular among scientists and engineers. However, in the last two decades they have become very important techniques in solving complex problems which would be very difficult to tackle otherwise. With the recent emergence of smart grids, new environments have appeared capable of integrating demand, generation, and storage. These employ intelligent and adaptive elements that require more advanced techniques for accurate and precise demand and generation forecasting in order to work optimally. This review discusses the most relevant studies on electric demand prediction over the last 40 years, and presents the different models used as well as the future trends. Additionally, it analyzes the latest studies on demand forecasting in the future environments that emerge from the usage of smart grids.

Journal ArticleDOI
TL;DR: This article presents a general view of fairness studies, and poses three core questions that help to delineate the nuances in defining fairness, and looks into the major fairness research domains in wireless networks such as fair energy consumption control, power control, topology control, link and flow scheduling, channel assignment, rate allocation, congestion control and routing protocols.
Abstract: The pervasiveness of wireless technology has indeed created massive opportunity to integrate almost everything into the Internet fabric. This can be seen with the advent of Internet of Things and Cyber Physical Systems, which involves cooperation of massive number of intelligent devices to provide intelligent services. Fairness amongst these devices is an important issue that can be analysed from several dimensions, e.g., energy usage, achieving required quality of services, spectrum sharing, and so on. This article focusses on these viewpoints while looking at fairness research. To generalize, mainly wireless networks are considered. First, we present a general view of fairness studies, and pose three core questions that help us delineate the nuances in defining fairness. Then, the existing fairness models are summarized and compared. We also look into the major fairness research domains in wireless networks such as fair energy consumption control, power control, topology control, link and flow scheduling, channel assignment, rate allocation, congestion control and routing protocols. We make a distinction amongst fairness, utility and resource allocation to begin with. Later, we present their inter-relation. At the end of this article, we list the common properties of fairness and give an example of fairness management. Several open research challenges that point to further work on fairness in wireless networks are also discussed. Indeed, the research on fairness is entangled with many other aspects such as performance, utility, optimization and throughput at the network and node levels. While consolidating the contributions in the literature, this article tries to explain the niceties of all these aspects in the domain of wireless networking.

Journal ArticleDOI
TL;DR: This paper is the first of its kind to provide an integrated tutorial on all stages of a flow monitoring setup, and shows, for example, how the previously opposing approaches of deep packet inspection and flow monitoring have been united into novel monitoring approaches.
Abstract: Flow monitoring has become a prevalent method for monitoring traffic in high-speed networks By focusing on the analysis of flows, rather than individual packets, it is often said to be more scalable than traditional packet-based traffic analysis Flow monitoring embraces the complete chain of packet observation, flow export using protocols such as NetFlow and IPFIX, data collection, and data analysis In contrast to what is often assumed, all stages of flow monitoring are closely intertwined Each of these stages therefore has to be thoroughly understood, before being able to perform sound flow measurements Otherwise, flow data artifacts and data loss can be the consequence, potentially without being observed This paper is the first of its kind to provide an integrated tutorial on all stages of a flow monitoring setup As shown throughout this paper, flow monitoring has evolved from the early 1990s into a powerful tool, and additional functionality will certainly be added in the future We show, for example, how the previously opposing approaches of deep packet inspection and flow monitoring have been united into novel monitoring approaches

Journal ArticleDOI
TL;DR: This paper surveys the state-of-the-art routing metrics for cognitive radio networks and provides a taxonomy of the different metrics and a survey of the way they have been used in different routing protocols.
Abstract: The majority of work in cognitive radio networks have focused on single-hop networks with mainly challenges at the physical and MAC layers. Recently, multi-hop secondary networks have gained attention as a promising design to leverage the full potential of cognitive radio networks. One of the main features of routing protocols in multi-hop networks is the routing metric used to select the best route for forwarding packets. In this paper, we survey the state-of-the-art routing metrics for cognitive radio networks. We start by listing the challenges that have to be addressed in designing a good routing metric for cognitive radio networks. We then provide a taxonomy of the different metrics and a survey of the way they have been used in different routing protocols. Then we present a case study to compare different classes of metrics. After that, we discuss how to combine individual routing metrics to obtain a global one. We end the paper with a discussion of the open issues in the design of future metrics for cognitive radio networks.

Journal ArticleDOI
TL;DR: This paper provides an overview on SDN roots and then describes the architecture underlying SDN and its main components, and presents existing SDN-related taxonomies and proposes a taxonomy that classifies the reviewed research works and brings relevant research directions into focus.
Abstract: Software-defined networking (SDN) has recently gained unprecedented attention from industry and research communities, and it seems unlikely that this will be attenuated in the near future. The ideas brought by SDN, although often described as a “revolutionary paradigm shift” in networking, are not completely new since they have their foundations in programmable networks and control-data plane separation projects. SDN promises simplified network management by enabling network automation, fostering innovation through programmability, and decreasing CAPEX and OPEX by reducing costs and power consumption. In this paper, we aim at analyzing and categorizing a number of relevant research works toward realizing SDN promises. We first provide an overview on SDN roots and then describe the architecture underlying SDN and its main components. Thereafter, we present existing SDN-related taxonomies and propose a taxonomy that classifies the reviewed research works and brings relevant research directions into focus. We dedicate the second part of this paper to studying and comparing the current SDN-related research initiatives and describe the main issues that may arise due to the adoption of SDN. Furthermore, we review several domains where the use of SDN shows promising results. We also summarize some foreseeable future research challenges.

Journal ArticleDOI
TL;DR: A broader view towards the WSN solution is presented by discussing important functions like medium access control, routing, and transport in detail to give some insight into specific requirements and the classification of protocols based on certain factors.
Abstract: Wireless Sensor Networks (WSNs) are applicable in numerous domains, including industrial automation where WSNs may be used for monitoring and control of industrial plants and equipment. However, the requirements in the industrial systems differ from the general WSN requirements. In recent years, standards have been defined by several industrial alliances. These standards are specified as frameworks with modifiable parts that can be defined based on the particular application of WSN. However, limited work has been done on defining industry-specific protocols that could be used as a part of these standards. In this survey, we discuss representative protocols that meet some of the requirements of the industrial applications. Since the industrial applications domain in itself is a vast area, we divide them into classes with similar requirements. We discuss these industrial classes, set of common requirements and various state-of-the-art WSN standards proposed to satisfy these requirements. We then present a broader view towards the WSN solution by discussing important functions like medium access control, routing, and transport in detail to give some insight into specific requirements and the classification of protocols based on certain factors. We list and discuss representative protocols for each of these functions that address requirements defined in the industrial classes. Security function is discussed in brief, mainly in relation to industrial standards. Finally, we identify unsolved challenges that are encountered during design of protocols and standards. In addition some new challenges are introduced and discussed.

Journal ArticleDOI
TL;DR: In this article, the authors present a unified review of waveform design options for multicarrier schemes, and pave the way for the evolution of the multic-carrier schemes from the current state of the art to future technologies.
Abstract: Due to their numerous advantages, communications over multicarrier schemes constitute an appealing approach for broadband wireless systems. Especially, the strong penetration of orthogonal frequency division multiplexing (OFDM) into the communications standards has triggered heavy investigation on multicarrier systems, leading to re-consideration of different approaches as an alternative to OFDM. The goal of the present survey is not only to provide a unified review of waveform design options for multicarrier schemes, but also to pave the way for the evolution of the multicarrier schemes from the current state of the art to future technologies. In particular, a generalized framework on multicarrier schemes is presented, based on what to transmit, i.e., symbols, how to transmit, i.e., filters, and where/when to transmit, i.e., lattice. Capitalizing on this framework, different variations of orthogonal, bi-orthogonal, and non-orthogonal multicarrier schemes are discussed. In addition, filter designs for various multicarrier systems are reviewed considering four different design perspectives: energy concentration, rapid decay, spectrum nulling, and channel/hardware characteristics. Subsequently, evaluation tools which may be used to compare different filters in multicarrier schemes are studied. Finally, multicarrier schemes are evaluated from the perspective of practical implementation aspects, such as lattice adaptation, equalization, synchronization, multiple antennas, and hardware impairments.

Journal ArticleDOI
TL;DR: This paper proposes an M2M service platform (M2SP) architecture and its functionalities, and presents the M1M ecosystem with this platform and discusses the issues and challenges of enabling technologies and standardization activities.
Abstract: Machine-to-Machine (M2M) refers to technologies with various applications. In order to provide the vision and goals of M2M, an M2M ecosystem with a service platform must be established by the key players in industrial domains so as to substantially reduce development costs and improve time to market of M2M devices and services. The service platform must be supported by M2M enabling technologies and standardization. In this paper, we present a survey of existing M2M service platforms and explore the various research issues and challenges involved in enabling an M2M service platform. We first classify M2M nodes according to their characteristics and required functions, and we then highlight the features of M2M traffic. With these in mind, we discuss the necessity of M2M platforms. By comparing and analyzing the existing approaches and solutions of M2M platforms, we identify the requirements and functionalities of the ideal M2M service platform. Based on these, we propose an M2M service platform (M2SP) architecture and its functionalities, and present the M2M ecosystem with this platform. Different application scenarios are given to illustrate the interaction between the components of the proposed platform. In addition, we discuss the issues and challenges of enabling technologies and standardization activities, and outline future research directions for the M2M network.

Journal ArticleDOI
TL;DR: A survey of the existing distributed mobile sink routing protocols is presented and a definitive and detailed categorization is made and the protocols' advantages and drawbacks are determined with respect to their target applications.
Abstract: The concentration of data traffic towards the sink in a wireless sensor network causes the nearby nodes to deplete their batteries quicker than other nodes, which leaves the sink stranded and disrupts the sensor data reporting. To mitigate this problem the usage of mobile sinks is proposed. Mobile sinks implicitly provide load-balancing and help achieving uniform energy-consumption across the network. However, the mechanisms to support the sink mobility (e.g., advertising the location of the mobile sink to the network) introduce an overhead in terms of energy consumption and packet delays. With these properties mobile sink routing constitutes an interesting research field with unique requirements. In this paper, we present a survey of the existing distributed mobile sink routing protocols. In order to provide an insight to the rationale and the concerns of a mobile sink routing protocol, design requirements and challenges associated with the problem of mobile sink routing are determined and explained. A definitive and detailed categorization is made and the protocols' advantages and drawbacks are determined with respect to their target applications.

Journal ArticleDOI
TL;DR: An overview of the security functionality of the LTE and LTE-A networks and the security vulnerabilities existing in the architecture and the design are explored and the potential research issues for the future research works are shown.
Abstract: High demands for broadband mobile wireless communications and the emergence of new wireless multimedia applications constitute the motivation to the development of broadband wireless access technologies in recent years. The Long Term Evolution/System Architecture Evolution (LTE/SAE) system has been specified by the Third Generation Partnership Project (3GPP) on the way towards fourth-generation (4G) mobile to ensure 3GPP keeping the dominance of the cellular communication technologies. Through the design and optimization of new radio access techniques and a further evolution of the LTE systems, the 3GPP is developing the future LTE-Advanced (LTE-A) wireless networks as the 4G standard of the 3GPP. Since the 3GPP LTE and LTE-A architecture are designed to support flat Internet Protocol (IP) connectivity and full interworking with heterogeneous wireless access networks, the new unique features bring some new challenges in the design of the security mechanisms. This paper makes a number of contributions to the security aspects of the LTE and LTE-A networks. First, we present an overview of the security functionality of the LTE and LTE-A networks. Second, the security vulnerabilities existing in the architecture and the design of the LTE and LTE-A networks are explored. Third, the existing solutions to these problems are classically reviewed. Finally, we show the potential research issues for the future research works.

Journal ArticleDOI
TL;DR: This survey will first review traditional channel estimation approaches based on channel frequency response (CFR) and Parametric model (PM)-based channel estimation, which is particularly suitable for sparse channels, will be also investigated in this survey.
Abstract: Orthogonal frequency division multiplexing (OFDM) has been widely adopted in modern wireless communication systems due to its robustness against the frequency selectivity of wireless channels. For coherent detection, channel estimation is essential for receiver design. Channel estimation is also necessary for diversity combining or interference suppression where there are multiple receive antennas. In this paper, we will present a survey on channel estimation for OFDM. This survey will first review traditional channel estimation approaches based on channel frequency response (CFR). Parametric model (PM)-based channel estimation, which is particularly suitable for sparse channels, will be also investigated in this survey. Following the success of turbo codes and low-density parity check (LDPC) codes, iterative processing has been widely adopted in the design of receivers, and iterative channel estimation has received a lot of attention since that time. Iterative channel estimation will be emphasized in this survey as the emerging iterative receiver improves system performance significantly. The combination of multiple-input multiple-output (MIMO) and OFDM has been widely accepted in modern communication systems, and channel estimation in MIMO-OFDM systems will also be addressed in this survey. Open issues and future work are discussed at the end of this paper.