scispace - formally typeset
Journal ArticleDOI

A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power

TLDR
In this article, a comprehensive analysis has been performed to evaluate the effects on the performance of nanofluids due to variations of density, specific heat, thermal conductivity and viscosity, which are functions of nanoparticle volume concentration and temperature.
About
This article is published in International Journal of Heat and Mass Transfer.The article was published on 2012-07-01. It has received 308 citations till now. The article focuses on the topics: Heat transfer coefficient & Nanofluid.

read more

Citations
More filters
Journal ArticleDOI

A review of the applications of nanofluids in solar energy

TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.
Journal ArticleDOI

A review on hybrid nanofluids: Recent research, development and applications

TL;DR: In this paper, a review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids, and showed that proper hybridization may make the hybrid nanoparticles very promising for heat transfer enhancement, however, lot of research works are still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.
Journal ArticleDOI

A review on preparation, characterization, properties and applications of nanofluids

TL;DR: In this paper, the preparation of metal and metal oxides nanofluids and hybrid or composite nano-fluids is discussed, and various techniques used to study the physical and chemical characteristics of nanof-luids are presented.
Journal ArticleDOI

Application of nanofluids in heat exchangers: A review

TL;DR: In this paper, the authors summarized the important published articles on the enhancement of the convection heat transfer in heat exchangers using nanofluids on two topics: theoretical and experimental results for the effective thermal conductivity, viscosity and the Nusselt number reported by several authors.
Journal ArticleDOI

A review on thermophysical properties of nanofluids and heat transfer applications

TL;DR: In this article, the authors summarized the important results regarding the improvement in the thermophysical properties of nanofluids and identified the opportunities for future research in the field of nanophotonics.
References
More filters
Journal ArticleDOI

Convective Transport in Nanofluids

TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Journal ArticleDOI

Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles

TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Related Papers (5)