scispace - formally typeset

Enhancing thermal conductivity of fluids with nano-particles

01 Jan 1995-Vol. 231, pp 99-105

...read more


Citations
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, a model is developed to analyze heat transfer performance of nanofluids inside an enclosure taking into account the solid particle dispersion, where the transport equations are solved numerically using the finite-volume approach along with the alternating direct implicit procedure.
Abstract: Heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids is investigated for various pertinent parameters. A model is developed to analyze heat transfer performance of nanofluids inside an enclosure taking into account the solid particle dispersion. The transport equations are solved numerically using the finite-volume approach along with the alternating direct implicit procedure. Comparisons with previously published work on the basis of special cases are performed and found to be in excellent agreement. The effect of suspended ultrafine metallic nanoparticles on the fluid flow and heat transfer processes within the enclosure is analyzed and effective thermal conductivity enhancement maps are developed for various controlling parameters. In addition, an analysis of variants based on the thermophysical properties of nanofluid is developed and presented. It is shown that the variances within different models have substantial effects on the results. Finally, a heat transfer correlation of the average Nusselt number for various Grashof numbers and volume fractions is presented.

2,285 citations


Cites background from "Enhancing thermal conductivity of f..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this article, the authors present a procedure for preparing a nanofluid which is a suspension consisting of nanophase powders and a base liquid, and their TEM photographs are given to illustrate the stability and evenness of suspension.
Abstract: This paper presents a procedure for preparing a nanofluid which is a suspension consisting of nanophase powders and a base liquid. By means of the procedure, some sample nanofluids are prepared. Their TEM photographs are given to illustrate the stability and evenness of suspension. The theoretical study of the thermal conductivity of nanofluids is introduced. The hot-wire apparatus is used to measure the thermal conductivity of nanofluids with suspended copper nanophase powders. Some factors such as the volume fraction, dimensions, shapes and properties of the nanoparticles are discussed. A theoretical model is proposed to describe heat transfer performance of the nanofluid flowing in a tube, with accounting for dispersion of solid particles.

2,061 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors investigated the increase of thermal conductivity with temperature for nano fluids with water as base fluid and particles of Al 2 O 3 or CuO as suspension material.
Abstract: Usual heat transfer fluids with suspended ultra fine particles of nanometer size are named as nanofluids, which have opened a new dimension in heat transfer processes. The recent investigations confirm the potential of nanofluids in enhancing heat transfer required for present age technology. The present investigation goes detailed into investigating the increase of thermal conductivity with temperature for nano fluids with water as base fluid and particles of Al 2 O 3 or CuO as suspension material. A temperature oscillation technique is utilized for the measurement of thermal diffusivity and thermal conductivity is calculated from it

2,012 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors measured the effective thermal conductivity of mixtures of Al 2O3 and CuO, dispersed in water, vacuum pump, engine oil, and ethylene glycol.
Abstract: Effective thermal conductivity of mixtures of e uids and nanometer-size particles is measured by a steady-state parallel-plate method. The tested e uids contain two types of nanoparticles, Al 2O3 and CuO, dispersed in water, vacuum pump e uid, engine oil, and ethylene glycol. Experimental results show that the thermal conductivities of nanoparticle ‐e uid mixtures are higher than those of the base e uids. Using theoretical models of effective thermal conductivity of a mixture, we have demonstrated that the predicted thermal conductivities of nanoparticle ‐e uid mixtures are much lower than our measured data, indicating the dee ciency in the existing models when used for nanoparticle ‐e uid mixtures. Possible mechanisms contributing to enhancement of the thermal conductivity of the mixtures are discussed. A more comprehensive theory is needed to fully explain the behavior of nanoparticle ‐e uid mixtures. Nomenclature cp = specie c heat k = thermal conductivity L = thickness Pe = Peclet number P q = input power to heater 1 r = radius of particle S = cross-sectional area T = temperature U = velocity of particles relative to that of base e uids ® = ratio of thermal conductivity of particle to that of base liquid ¯ = .® i 1/=.® i 2/ ° = shear rate of e ow Ω = density A = volume fraction of particles in e uids Subscripts

1,926 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors summarized the important published articles on the enhancement of the forced convection heat transfer with nanofluids, including simulations, simulations, and experimental results.
Abstract: Nanofluids are considered to offer important advantages over conventional heat transfer fluids. Over a decade ago, researchers focused on measuring and modeling the effective thermal conductivity and viscosity of nanofluids. Recently important theoretical and experimental research works on convective heat transfer appeared in the open literatures on the enhancement of heat transfer using suspensions of nanometer-sized solid particle materials, metallic or nonmetallic in base heat transfer fluids. The purpose of this review article is to summarize the important published articles on the enhancement of the forced convection heat transfer with nanofluids.

1,538 citations


Cites background from "Enhancing thermal conductivity of f..."

  • [...]

  • [...]