scispace - formally typeset
Proceedings ArticleDOI

A Secure Sharding Protocol For Open Blockchains

TLDR
ELASTICO is the first candidate for a secure sharding protocol with presence of byzantine adversaries, and scalability experiments on Amazon EC2 with up to $1, 600$ nodes confirm ELASTICO's theoretical scaling properties.
Abstract
Cryptocurrencies, such as Bitcoin and 250 similar alt-coins, embody at their core a blockchain protocol --- a mechanism for a distributed network of computational nodes to periodically agree on a set of new transactions. Designing a secure blockchain protocol relies on an open challenge in security, that of designing a highly-scalable agreement protocol open to manipulation by byzantine or arbitrarily malicious nodes. Bitcoin's blockchain agreement protocol exhibits security, but does not scale: it processes 3--7 transactions per second at present, irrespective of the available computation capacity at hand. In this paper, we propose a new distributed agreement protocol for permission-less blockchains called ELASTICO. ELASTICO scales transaction rates almost linearly with available computation for mining: the more the computation power in the network, the higher the number of transaction blocks selected per unit time. ELASTICO is efficient in its network messages and tolerates byzantine adversaries of up to one-fourth of the total computational power. Technically, ELASTICO uniformly partitions or parallelizes the mining network (securely) into smaller committees, each of which processes a disjoint set of transactions (or "shards"). While sharding is common in non-byzantine settings, ELASTICO is the first candidate for a secure sharding protocol with presence of byzantine adversaries. Our scalability experiments on Amazon EC2 with up to $1, 600$ nodes confirm ELASTICO's theoretical scaling properties.

read more

Citations
More filters
Journal ArticleDOI

Electronic Regulation of Data Sharing and Processing Using Smart Ledger Technologies for Supply-Chain Security

TL;DR: Results suggest that Cydon provides authorized and fast access to secure distributed data, avoids single points of failure by securely distributing encrypted data across different nodes while maintains an “always-on” chain of custody.
Journal ArticleDOI

A Survey on Blockchain-Based IoMT Systems: Towards Scalability

TL;DR: In this article, the authors discuss several approaches proposed in the literature to improve the scalability of blockchain technology, and thus overcoming the above mentioned research gap, and give recommendations and directions to facilitate designing a scalable blockchain-based IoMT system.
Proceedings ArticleDOI

Replay Attacks and Defenses Against Cross-shard Consensus in Sharded Distributed Ledgers

TL;DR: A prototype of Byzcuit is implemented and evaluated on a real cloud-based testbed, showing that the defenses of this new cross-shard consensus protocol impact performance minimally, and overall performance surpasses previous works.
Journal ArticleDOI

Trust-Based Shard Distribution Scheme for Fault-Tolerant Shard Blockchain Networks

TL;DR: A trust-based shard distribution (TBSD) scheme that assigns potential malicious nodes in the network to different shards, preventing malicious nodes from gaining a dominating influence on the consensus of a single shard.
Journal ArticleDOI

Database and distributed computing fundamentals for scalable, fault-tolerant, and consistent maintenance of blockchains

TL;DR: This tutorial provides the necessary distributed systems background in managing large scale fully replicated ledgers, using Byzantine Agreement protocols to solve the consensus problem in blockchains.
References
More filters
Journal ArticleDOI

The Byzantine Generals Problem

TL;DR: The Albanian Generals Problem as mentioned in this paper is a generalization of Dijkstra's dining philosophers problem, where two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive.
Book ChapterDOI

The Byzantine generals problem

TL;DR: In this article, a group of generals of the Byzantine army camped with their troops around an enemy city are shown to agree upon a common battle plan using only oral messages, if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals.
Book ChapterDOI

The Sybil Attack

TL;DR: It is shown that, without a logically centralized authority, Sybil attacks are always possible except under extreme and unrealistic assumptions of resource parity and coordination among entities.
Book

Distributed algorithms

Nancy Lynch
TL;DR: This book familiarizes readers with important problems, algorithms, and impossibility results in the area, and teaches readers how to reason carefully about distributed algorithms-to model them formally, devise precise specifications for their required behavior, prove their correctness, and evaluate their performance with realistic measures.
Proceedings ArticleDOI

Practical Byzantine fault tolerance

TL;DR: A new replication algorithm that is able to tolerate Byzantine faults that works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude.
Related Papers (5)