scispace - formally typeset
Proceedings ArticleDOI

A Secure Sharding Protocol For Open Blockchains

TLDR
ELASTICO is the first candidate for a secure sharding protocol with presence of byzantine adversaries, and scalability experiments on Amazon EC2 with up to $1, 600$ nodes confirm ELASTICO's theoretical scaling properties.
Abstract
Cryptocurrencies, such as Bitcoin and 250 similar alt-coins, embody at their core a blockchain protocol --- a mechanism for a distributed network of computational nodes to periodically agree on a set of new transactions. Designing a secure blockchain protocol relies on an open challenge in security, that of designing a highly-scalable agreement protocol open to manipulation by byzantine or arbitrarily malicious nodes. Bitcoin's blockchain agreement protocol exhibits security, but does not scale: it processes 3--7 transactions per second at present, irrespective of the available computation capacity at hand. In this paper, we propose a new distributed agreement protocol for permission-less blockchains called ELASTICO. ELASTICO scales transaction rates almost linearly with available computation for mining: the more the computation power in the network, the higher the number of transaction blocks selected per unit time. ELASTICO is efficient in its network messages and tolerates byzantine adversaries of up to one-fourth of the total computational power. Technically, ELASTICO uniformly partitions or parallelizes the mining network (securely) into smaller committees, each of which processes a disjoint set of transactions (or "shards"). While sharding is common in non-byzantine settings, ELASTICO is the first candidate for a secure sharding protocol with presence of byzantine adversaries. Our scalability experiments on Amazon EC2 with up to $1, 600$ nodes confirm ELASTICO's theoretical scaling properties.

read more

Citations
More filters
Proceedings ArticleDOI

SecurShard: A Model for Hierarchical Fault Detection in Blockchain Sharding

TL;DR: In this article , a hierarchical fault detection model called SecurShard is presented, which combines shards into groups, one-to-all mapping of a transaction block to all shards in a group, and 100% consensus requirement to validate and append a block to blockchain; all these to ensure that a potentially invalid block is detected with high probability during transaction processing rather than after appending to blockchain.
Posted Content

Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain System with Confidentiality Guarantees.

TL;DR: Qanaat as mentioned in this paper is a scalable multi-enterprise permissioned blockchain system that guarantees confidentiality and data consistency among multiple enterprises where each enterprise partitions its data into multiple shards and replicates a data shard on a cluster of nodes to provide fault tolerance.
Posted Content

DispersedLedger: High-Throughput Byzantine Consensus on Variable Bandwidth Networks.

TL;DR: DispersedLedger as mentioned in this paper is an asynchronous Byzantine fault tolerant consensus protocol that provides near-optimal throughput in the presence of variable communication bandwidth across nodes and across time by enabling nodes to agree on an ordered log of blocks, with a guarantee that each block is available within the network and unmalleable.
Book ChapterDOI

State Sharding for Permissioned Blockchain

TL;DR: Wang et al. as mentioned in this paper proposed a distributed blockchain transaction structure, which imports extra parameters to divide the transaction execution into different stages to enable distributed execution, and distributed state update sharding, which equips each blockchain peer with its own master and shard servers.
References
More filters
Journal ArticleDOI

The Byzantine Generals Problem

TL;DR: The Albanian Generals Problem as mentioned in this paper is a generalization of Dijkstra's dining philosophers problem, where two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive.
Book ChapterDOI

The Byzantine generals problem

TL;DR: In this article, a group of generals of the Byzantine army camped with their troops around an enemy city are shown to agree upon a common battle plan using only oral messages, if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals.
Book ChapterDOI

The Sybil Attack

TL;DR: It is shown that, without a logically centralized authority, Sybil attacks are always possible except under extreme and unrealistic assumptions of resource parity and coordination among entities.
Book

Distributed algorithms

Nancy Lynch
TL;DR: This book familiarizes readers with important problems, algorithms, and impossibility results in the area, and teaches readers how to reason carefully about distributed algorithms-to model them formally, devise precise specifications for their required behavior, prove their correctness, and evaluate their performance with realistic measures.
Proceedings ArticleDOI

Practical Byzantine fault tolerance

TL;DR: A new replication algorithm that is able to tolerate Byzantine faults that works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude.
Related Papers (5)