scispace - formally typeset
Open AccessProceedings ArticleDOI

Algorand: Scaling Byzantine Agreements for Cryptocurrencies

Reads0
Chats0
TLDR
Algorand as discussed by the authors is a new cryptocurrency that confirms transactions with latency on the order of a minute while scaling to many users, using a novel mechanism based on Verifiable Random Functions that allows users to privately check whether they are selected to participate in the BA to agree on the next set of transactions, and to include a proof of their selection in their network messages.
Abstract
Algorand is a new cryptocurrency that confirms transactions with latency on the order of a minute while scaling to many users. Algorand ensures that users never have divergent views of confirmed transactions, even if some of the users are malicious and the network is temporarily partitioned. In contrast, existing cryptocurrencies allow for temporary forks and therefore require a long time, on the order of an hour, to confirm transactions with high confidence. Algorand uses a new Byzantine Agreement (BA) protocol to reach consensus among users on the next set of transactions. To scale the consensus to many users, Algorand uses a novel mechanism based on Verifiable Random Functions that allows users to privately check whether they are selected to participate in the BA to agree on the next set of transactions, and to include a proof of their selection in their network messages. In Algorand's BA protocol, users do not keep any private state except for their private keys, which allows Algorand to replace participants immediately after they send a message. This mitigates targeted attacks on chosen participants after their identity is revealed. We implement Algorand and evaluate its performance on 1,000 EC2 virtual machines, simulating up to 500,000 users. Experimental results show that Algorand confirms transactions in under a minute, achieves 125x Bitcoin's throughput, and incurs almost no penalty for scaling to more users.

read more

Citations
More filters
Proceedings ArticleDOI

OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding

TL;DR: OmniLedger ensures security and correctness by using a bias-resistant public-randomness protocol for choosing large, statistically representative shards that process transactions, and by introducing an efficient cross-shard commit protocol that atomically handles transactions affecting multiple shards.
Journal ArticleDOI

Untangling Blockchain: A Data Processing View of Blockchain Systems

TL;DR: This paper conducts a comprehensive evaluation of three major blockchain systems based on BLOCKBENCH, namely Ethereum, Parity, and Hyperledger Fabric, and discusses several research directions for bringing blockchain performance closer to the realm of databases.
Proceedings ArticleDOI

RapidChain: Scaling Blockchain via Full Sharding

TL;DR: RapidChain is proposed, the first sharding-based public blockchain protocol that is resilient to Byzantine faults from up to a 1/3 fraction of its participants, and achieves complete sharding of the communication, computation, and storage overhead of processing transactions without assuming any trusted setup.
Journal ArticleDOI

A Survey on Consensus Mechanisms and Mining Strategy Management in Blockchain Networks

TL;DR: This paper provides a systematic vision of the organization of the blockchain networks, a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication, and discusses several open issues in the protocol design for blockchain consensus.
Journal ArticleDOI

Blockchain for Internet of Things: A Survey

TL;DR: An in-depth survey of BCoT is presented and the insights of this new paradigm are discussed and the open research directions in this promising area are outlined.
References
More filters
Book ChapterDOI

Identity-Based Encryption from the Weil Pairing

TL;DR: This work proposes a fully functional identity-based encryption scheme (IBE) based on the Weil pairing that has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem.
Journal ArticleDOI

Identity-Based Encryption from the Weil Pairing

TL;DR: This work proposes a fully functional identity-based encryption (IBE) scheme based on bilinear maps between groups and gives precise definitions for secure IBE schemes and gives several applications for such systems.
Book ChapterDOI

The Sybil Attack

TL;DR: It is shown that, without a logically centralized authority, Sybil attacks are always possible except under extreme and unrealistic assumptions of resource parity and coordination among entities.