scispace - formally typeset
Journal ArticleDOI

A Similarity-Based Aspect-Graph Approach to 3D Object Recognition

TLDR
This paper describes a view-based method for recognizing 3D objects from 2D images using an aspect-graph structure, where the aspects are not based on the singularities of visual mapping but are instead formed using a notion of shape similarity between views.
Abstract
This paper describes a view-based method for recognizing 3D objects from 2D images. We employ an aspect-graph structure, where the aspects are not based on the singularities of visual mapping but are instead formed using a notion of shape similarity between views. Specifically, the viewing sphere is endowed with a metric of dis-similarity for each pair of views and the problem of aspect generation is viewed as a “segmentation” of the viewing sphere into homogeneous regions. The viewing sphere is sampled at regular (5 degree) intervals and the similarity metric is used in an iterative procedure to combine views into aspects with a prototype representing each aspect. This is done in a “region-growing” regime which stands in contrast to the usual “edge detection” styles to computing the aspect graph. The aspect growth is constrained such that two aspects of an object remain distinct under the given similarity metric. Once the database of 3D objects is organized as a set of aspects, and prototypes for these aspects for each object, unknown views of database objects are compared with the prototypes and the results are ordered by similarity. We use two similarity metrics for shape, one based on curve matching and the other based on matching shock graphs, which for a database of 64 objects and unknown views of objects from the database give a recall rate of (90.3%, 74.2%, 59.7%) and (95.2%, 69.0%, 57.5%), respectively, for the top three matchess cumulative recall rate based on the top three matches is 98% and 100%, respectively. The result of indexing unknown views of objects not in the database also produce intuitive matches. We also develop a hierarchical indexing scheme to prune unlikely objects at an early stage to improve the efficiency of indexing, resulting in savings of 35% at the top level and of 55% at the next level, cumulatively.

read more

Citations
More filters
Proceedings ArticleDOI

Multi-view Convolutional Neural Networks for 3D Shape Recognition

TL;DR: In this article, a CNN architecture is proposed to combine information from multiple views of a 3D shape into a single and compact shape descriptor, which can be applied to accurately recognize human hand-drawn sketches of shapes.
Posted Content

Multi-view Convolutional Neural Networks for 3D Shape Recognition

TL;DR: This work presents a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and shows that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art3D shape descriptors.
Proceedings ArticleDOI

Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views

TL;DR: A scalable and overfit-resistant image synthesis pipeline, together with a novel CNN specifically tailored for the viewpoint estimation task, is proposed that can significantly outperform state-of-the-art methods on PASCAL 3D+ benchmark.
Proceedings ArticleDOI

3D generic object categorization, localization and pose estimation

TL;DR: This work proposes a novel and robust model to represent and learn generic 3D object categories, and proposes a framework in which learning is done via minimal supervision compared to previous works.
Proceedings ArticleDOI

Recognition using regions

TL;DR: This paper presents a unified framework for object detection, segmentation, and classification using regions using a generalized Hough voting scheme to generate hypotheses of object locations, scales and support, followed by a verification classifier and a constrained segmenter on each hypothesis.
References
More filters
Journal ArticleDOI

Eigenfaces for recognition

TL;DR: A near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals, and that is easy to implement using a neural network architecture.
Journal ArticleDOI

Recognition-by-Components: A Theory of Human Image Understanding.

TL;DR: Recognition-by-components (RBC) provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition.

Principles of categorization

TL;DR: On those remote pages it is written that animals are divided into those that belong to the Emperor, and those that are trained, suckling pigs and stray dogs.
Journal ArticleDOI

Seeded region growing

TL;DR: This correspondence presents a new algorithm for segmentation of intensity images which is robust, rapid, and free of tuning parameters, and suggests two ways in which it can be employed, namely, by using manual seed selection or by automated procedures.
Journal ArticleDOI

Application of the Karhunen-Loeve procedure for the characterization of human faces

TL;DR: The use of natural symmetries (mirror images) in a well-defined family of patterns (human faces) is discussed within the framework of the Karhunen-Loeve expansion, which results in an extension of the data and imposes even and odd symmetry on the eigenfunctions of the covariance matrix.
Related Papers (5)