scispace - formally typeset
Open AccessJournal ArticleDOI

A survey on heterogeneous transfer learning

Oscar Day, +1 more
- 01 Dec 2017 - 
- Vol. 4, Iss: 1, pp 1-42
TLDR
This paper contributes a comprehensive survey and analysis of current methods designed for performing heterogeneous transfer learning tasks to provide an updated, centralized outlook into current methodologies.
Abstract
Transfer learning has been demonstrated to be effective for many real-world applications as it exploits knowledge present in labeled training data from a source domain to enhance a model’s performance in a target domain, which has little or no labeled target training data. Utilizing a labeled source, or auxiliary, domain for aiding a target task can greatly reduce the cost and effort of collecting sufficient training labels to create an effective model in the new target distribution. Currently, most transfer learning methods assume the source and target domains consist of the same feature spaces which greatly limits their applications. This is because it may be difficult to collect auxiliary labeled source domain data that shares the same feature space as the target domain. Recently, heterogeneous transfer learning methods have been developed to address such limitations. This, in effect, expands the application of transfer learning to many other real-world tasks such as cross-language text categorization, text-to-image classification, and many others. Heterogeneous transfer learning is characterized by the source and target domains having differing feature spaces, but may also be combined with other issues such as differing data distributions and label spaces. These can present significant challenges, as one must develop a method to bridge the feature spaces, data distributions, and other gaps which may be present in these cross-domain learning tasks. This paper contributes a comprehensive survey and analysis of current methods designed for performing heterogeneous transfer learning tasks to provide an updated, centralized outlook into current methodologies.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A Comprehensive Survey on Transfer Learning

TL;DR: Transfer learning aims to improve the performance of target learners on target domains by transferring the knowledge contained in different but related source domains as discussed by the authors, in which the dependence on a large number of target-domain data can be reduced for constructing target learners.
Journal ArticleDOI

Deep visual domain adaptation: A survey

TL;DR: Deep domain adaptation has emerged as a new learning technique to address the lack of massive amounts of labeled data as discussed by the authors, which leverages deep networks to learn more transferable representations by embedding domain adaptation in the pipeline of deep learning.
Journal Article

Measuring statistical dependence with Hilbert-Schmidt norms

TL;DR: An independence criterion based on the eigen-spectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator, or HSIC, is proposed.
Journal ArticleDOI

A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective

TL;DR: This survey performs a comprehensive study of data collection from a data management point of view, providing a research landscape of these operations, guidelines on which technique to use when, and identify interesting research challenges.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.

Some methods for classification and analysis of multivariate observations

TL;DR: The k-means algorithm as mentioned in this paper partitions an N-dimensional population into k sets on the basis of a sample, which is a generalization of the ordinary sample mean, and it is shown to give partitions which are reasonably efficient in the sense of within-class variance.
Related Papers (5)