scispace - formally typeset
Open AccessBook

A Treatise on Electricity and Magnetism

Reads0
Chats0
TLDR
The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Abstract
Arguably the most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831–1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field. A fellow of Trinity College Cambridge, Maxwell became, in 1871, the first Cavendish Professor of Physics at Cambridge. His famous equations - a set of four partial differential equations that relate the electric and magnetic fields to their sources, charge density and current density - first appeared in fully developed form in his 1873 Treatise on Electricity and Magnetism. This two-volume textbook brought together all the experimental and theoretical advances in the field of electricity and magnetism known at the time, and provided a methodical and graduated introduction to electromagnetic theory. Volume 2 covers magnetism and electromagnetism, including the electromagnetic theory of light, the theory of magnetic action on light, and the electric theory of magnetism.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A theory of nonlinear networks. I

TL;DR: This report describes a new approach to nonlinear RLC-networks which is based on the fact that the system of differential equations for such networks has the special form T/-x di dP(i, v) .
Journal ArticleDOI

Application of nanofluids in heat exchangers: A review

TL;DR: In this paper, the authors summarized the important published articles on the enhancement of the convection heat transfer in heat exchangers using nanofluids on two topics: theoretical and experimental results for the effective thermal conductivity, viscosity and the Nusselt number reported by several authors.
Journal ArticleDOI

Colossal dielectric constants in transition-metal oxides

TL;DR: In this paper, a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related transition-metal oxides with large dielectoric constants is provided.
Journal ArticleDOI

Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid

TL;DR: In this article, the authors investigated the thermal conductivity and viscosity of copper nanoparticles in ethylene glycol and found that the measured increase in thermal conductivities was twice the value predicted by the Maxwell effective medium theory.
Related Papers (5)