scispace - formally typeset
Open AccessProceedings ArticleDOI

Active Object Localization with Deep Reinforcement Learning

TLDR
In this paper, an active detection model is proposed for localizing objects in scenes, which allows an agent to focus attention on candidate regions for identifying the correct location of a target object.
Abstract
We present an active detection model for localizing objects in scenes. The model is class-specific and allows an agent to focus attention on candidate regions for identifying the correct location of a target object. This agent learns to deform a bounding box using simple transformation actions, with the goal of determining the most specific location of target objects following top-down reasoning. The proposed localization agent is trained using deep reinforcement learning, and evaluated on the Pascal VOC 2007 dataset. We show that agents guided by the proposed model are able to localize a single instance of an object after analyzing only between 11 and 25 regions in an image, and obtain the best detection results among systems that do not use object proposals for object localization.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Attention to Scale: Scale-Aware Semantic Image Segmentation

TL;DR: Zhang et al. as discussed by the authors propose an attention mechanism that learns to softly weight the multi-scale features at each pixel location, which not only outperforms average and max-pooling, but also allows diagnostically visualize the importance of features at different positions and scales.
Posted Content

Deep Reinforcement Learning: An Overview

Yuxi Li
- 25 Jan 2017 - 
TL;DR: This work discusses core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration, and important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn.
Posted Content

Attention to Scale: Scale-aware Semantic Image Segmentation

TL;DR: An attention mechanism that learns to softly weight the multi-scale features at each pixel location is proposed, which not only outperforms averageand max-pooling, but allows us to diagnostically visualize the importance of features at different positions and scales.
Proceedings ArticleDOI

Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

TL;DR: Through evaluation of the OTB dataset, the proposed tracker is validated to achieve a competitive performance that is three times faster than state-of-the-art, deep network–based trackers.
Proceedings Article

Runtime Neural Pruning

TL;DR: A Runtime Neural Pruning (RNP) framework which prunes the deep neural network dynamically at the runtime and preserves the full ability of the original network and conducts pruning according to the input image and current feature maps adaptively.
References
More filters
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Related Papers (5)