scispace - formally typeset
Journal ArticleDOI

Adaptive Dynamic Surface Control for Formations of Autonomous Surface Vehicles With Uncertain Dynamics

Reads0
Chats0
TLDR
A robust adaptive formation controller is developed by employing neural network and dynamic surface control technique and is able to capture the vehicle dynamics without exact information of coriolis and centripetal force, hydrodynamic damping and disturbances from the environment.
Abstract
In this brief, we consider the formation control problem of underactuated autonomous surface vehicles (ASVs) moving in a leader-follower formation, in the presence of uncertainties and ocean disturbances. A robust adaptive formation controller is developed by employing neural network and dynamic surface control technique. The stability of the design is proven via Lyapunov analysis where semiglobal uniform ultimate boundedness of the closed-loop signals is guaranteed. The advantages of the proposed formation controller are that: first, the proposed method only uses the measurements of line-of-sight range and angle by local sensors, no other information about the leader is required for control implementation; second, the developed neural formation controller is able to capture the vehicle dynamics without exact information of coriolis and centripetal force, hydrodynamic damping and disturbances from the environment. Comparative analysis with a model-based approach is given to demonstrate the effectiveness of the proposed method.

read more

Citations
More filters
Journal ArticleDOI

A time-varying observer design for synchronization with an uncertain target and its applications in coordinated mission rendezvous

TL;DR: In this article , a multi-stage cooperative mission rendezvous strategy is proposed for uncertain moving targets with unknown external inputs and heterogeneous system dynamics, where the trackers maintain a specified altitude to pre-construct the rendezvous region.
Journal ArticleDOI

Variable Structure Feedback Construction Algorithm for controlling measurement-imploded leader–follower ground robots

TL;DR: In this paper, a 3-phase algorithm is proposed to address open-loop systems of the mentioned form, which is specifically beneficial to the case where linear velocity and position sensors get damaged.
Journal ArticleDOI

Unmanned surface vessel heading control of model-free adaptive method with variable integral separated and proportion control:

TL;DR: The introduction of proportional control and variable integral separation factor solves the problems of oscillation, instability, and integral saturation when rudder angle is controlled directly to control the heading of unmanned surface vessel with compact form dynamic linearization model-free adaptive control method.
Journal ArticleDOI

Dynamic surface control design for the rotating stall and surge in an aeroengine compressor

TL;DR: In this paper, a dynamic surface controller is proposed for the control of the rotating stall and surge of an aeroengine, which is simpler than the backstepping method, which suffers from the problem of "explosion of terms".
References
More filters
Journal ArticleDOI

Approximation capabilities of multilayer feedforward networks

TL;DR: It is shown that standard multilayer feedforward networks with as few as a single hidden layer and arbitrary bounded and nonconstant activation function are universal approximators with respect to L p (μ) performance criteria, for arbitrary finite input environment measures μ.
Journal ArticleDOI

Information flow and cooperative control of vehicle formations

TL;DR: A Nyquist criterion is proved that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability, and a method for decentralized information exchange between vehicles is proposed.
Journal ArticleDOI

Behavior-based formation control for multirobot teams

TL;DR: New reactive behaviors that implement formations in multirobot teams are presented and evaluated and demonstrate the value of various types of formations in autonomous, human-led and communications-restricted applications, and their appropriateness in different types of task environments.
Journal ArticleDOI

Dynamic surface control for a class of nonlinear systems

TL;DR: A method is proposed for designing controllers with arbitrarily small tracking error for uncertain, mismatched nonlinear systems in the strict feedback form and it is shown that these low pass filters allow a design where the model is not differentiated, thus ending the complexity arising due to the "explosion of terms" that has made other methods difficult to implement in practice.
Journal ArticleDOI

Information flow and cooperative control of vehicle formations

TL;DR: It is demonstrated how exchange of minimal amounts of information between vehicles can be designed to realize a dynamical system which supplies each vehicle with a shared reference trajectory.
Related Papers (5)