scispace - formally typeset
Proceedings ArticleDOI

AdaptiveFace: Adaptive Margin and Sampling for Face Recognition

Reads0
Chats0
TLDR
This paper proposes the Adaptive Margin Softmax to adjust the margins for different classes adaptively, and makes the sampling process adaptive in two folds: Firstly, the Hard Prototype Mining to adaptively select a small number of hard classes to participate in classification, and secondly, theAdaptive Data Sampling to find valuable samples for training adaptively.
Abstract
Training large-scale unbalanced data is the central topic in face recognition. In the past two years, face recognition has achieved remarkable improvements due to the introduction of margin based Softmax loss. However, these methods have an implicit assumption that all the classes possess sufficient samples to describe its distribution, so that a manually set margin is enough to equally squeeze each intra-class variations. However, real face datasets are highly unbalanced, which means the classes have tremendously different numbers of samples. In this paper, we argue that the margin should be adapted to different classes. We propose the Adaptive Margin Softmax to adjust the margins for different classes adaptively. In addition to the unbalance challenge, face data always consists of large-scale classes and samples. Smartly selecting valuable classes and samples to participate in the training makes the training more effective and efficient. To this end, we also make the sampling process adaptive in two folds: Firstly, we propose the Hard Prototype Mining to adaptively select a small number of hard classes to participate in classification. Secondly, for data sampling, we introduce the Adaptive Data Sampling to find valuable samples for training adaptively. We combine these three parts together as AdaptiveFace. Extensive analysis and experiments on LFW, LFW BLUFR and MegaFace show that our method performs better than state-of-the-art methods using the same network architecture and training dataset. Code is available at https://github.com/haoliu1994/AdaptiveFace.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

TL;DR: This article proposed an additive angular margin loss (ArcFace) to obtain highly discriminative features for face recognition, which has a clear geometric interpretation due to the exact correspondence to the geodesic distance on the hypersphere.
Journal ArticleDOI

Deep face recognition: A survey

TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.
Proceedings ArticleDOI

CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition

TL;DR: This work proposes a novel Adaptive Curriculum Learning loss (CurricularFace) that embeds the idea of curriculum learning into the loss function to achieve a novel training strategy for deep face recognition, which mainly addresses easy samples in the early training stage and hard ones in the later stage.
Proceedings ArticleDOI

MagFace: A Universal Representation for Face Recognition and Quality Assessment

TL;DR: MagFace as discussed by the authors introduces an adaptive mechanism to learn a well-structured within-class feature distributions by pulling easy samples to class centers while pushing hard samples away, which prevents models from overfitting on noisy low-quality samples and improves face recognition in the wild.
Posted Content

Biometric Recognition Using Deep Learning: A Survey

TL;DR: This work provides a comprehensive survey of more than 120 promising works on biometric recognition (including face, fingerprint, iris, palmprint, ear, voice, signature, and gait recognition), which deploy deep learning models, and show their strengths and potentials in different applications.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings ArticleDOI

FaceNet: A unified embedding for face recognition and clustering

TL;DR: A system that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity, and achieves state-of-the-art face recognition performance using only 128-bytes perface.
Proceedings ArticleDOI

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

TL;DR: This work revisits both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network.

Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments

TL;DR: The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life, and exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background.
Proceedings ArticleDOI

Deep face recognition

TL;DR: It is shown how a very large scale dataset can be assembled by a combination of automation and human in the loop, and the trade off between data purity and time is discussed.
Related Papers (5)