scispace - formally typeset
Open AccessProceedings ArticleDOI

AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation

Reads0
Chats0
TLDR
This work presents AI2, the first sound and scalable analyzer for deep neural networks, and introduces abstract transformers that capture the behavior of fully connected and convolutional neural network layers with rectified linear unit activations (ReLU), as well as max pooling layers.
Abstract
We present AI2, the first sound and scalable analyzer for deep neural networks. Based on overapproximation, AI2 can automatically prove safety properties (e.g., robustness) of realistic neural networks (e.g., convolutional neural networks). The key insight behind AI2 is to phrase reasoning about safety and robustness of neural networks in terms of classic abstract interpretation, enabling us to leverage decades of advances in that area. Concretely, we introduce abstract transformers that capture the behavior of fully connected and convolutional neural network layers with rectified linear unit activations (ReLU), as well as max pooling layers. This allows us to handle real-world neural networks, which are often built out of those types of layers. We present a complete implementation of AI2 together with an extensive evaluation on 20 neural networks. Our results demonstrate that: (i) AI2 is precise enough to prove useful specifications (e.g., robustness), (ii) AI2 can be used to certify the effectiveness of state-of-the-art defenses for neural networks, (iii) AI2 is significantly faster than existing analyzers based on symbolic analysis, which often take hours to verify simple fully connected networks, and (iv) AI2 can handle deep convolutional networks, which are beyond the reach of existing methods.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Certified Adversarial Robustness via Randomized Smoothing

TL;DR: Strong empirical results suggest that randomized smoothing is a promising direction for future research into adversarially robust classification on smaller-scale datasets where competing approaches to certified $\ell_2$ robustness are viable, smoothing delivers higher certified accuracies.
Proceedings Article

Certified Adversarial Robustness via Randomized Smoothing

TL;DR: In this paper, randomized smoothing is used to obtain an ImageNet classifier with a certified top-1 accuracy of 49% under adversarial perturbations with less than 0.5.
Proceedings Article

Evaluating Robustness of Neural Networks with Mixed Integer Programming

TL;DR: Verification of piecewise-linear neural networks as a mixed integer program that is able to certify more samples than the state-of-the-art and find more adversarial examples than a strong first-order attack for every network.
Journal ArticleDOI

An abstract domain for certifying neural networks

TL;DR: This work proposes a new abstract domain which combines floating point polyhedra with intervals and is equipped with abstract transformers specifically tailored to the setting of neural networks, and introduces new transformers for affine transforms, the rectified linear unit, sigmoid, tanh, and maxpool functions.
Proceedings ArticleDOI

Certified Robustness to Adversarial Examples with Differential Privacy

TL;DR: PixelDP as discussed by the authors is based on a connection between robustness against adversarial examples and differential privacy, a cryptographically-inspired privacy formalism, that provides a rigorous, generic, and flexible foundation for defense.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Journal ArticleDOI

Receptive fields, binocular interaction and functional architecture in the cat's visual cortex

TL;DR: This method is used to examine receptive fields of a more complex type and to make additional observations on binocular interaction and this approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours.
Proceedings Article

Intriguing properties of neural networks

TL;DR: It is found that there is no distinction between individual highlevel units and random linear combinations of high level units, according to various methods of unit analysis, and it is suggested that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks.