scispace - formally typeset
Journal ArticleDOI

Analytic modified embedded atom potentials for HCP metals

TLDR
In this paper, an analytical modified embedded atom method (AMEAM) type many-body potentials have been constructed for ten hcp metals: Be, Co, Hf, Mg, Re, Ru, Sc, Ti, Y and Zr.
Abstract
Analytic modified embedded atom method (AMEAM) type many-body potentials have been constructed for ten hcp metals: Be, Co, Hf, Mg, Re, Ru, Sc, Ti, Y and Zr. The potentials are parametrized using analytic functions and fitted to the cohesive energy, unrelaxed vacancy formation energy, five independent second-order elastic constants and two equilibrium conditions. Hence, each of the constructed potentials represents a stable hexagonal close-packed lattice with a particular non-ideal c/a ratio. In order to treat the metals with negative Cauchy pressure, a modified term has been added to the total energy. For all the metals considered, the hcp lattice is shown to be energetically most stable when compared with the fcc and bcc structure and the hcp lattice with ideal c/a. The activation energy for vacancy diffusion in these metals has been calculated. They agree well with experimental data available and those calculated by other authors for both monovacancy and divacancy mechanisms and the most possible diffusion paths are predicted. Stacking fault and surface energy have also been calculated and their values are lower than typical experimental data. Finally, the self-interstitial atom (SIA) formation energy and volume have been evaluated for eight possible sites. This calculation suggests that the basal split or crowdion is the most stable configuration for metals with a rather large deviation from the ideal c/a value and the non-basal dumbbell (C or S) is the most stable configuration for metals with c/a near ideal. The relationship between SIA formation energy and melting temperature roughly obeys a linear relation for most metals except Ru and Re.

read more

Citations
More filters
Journal ArticleDOI

Radiation damage in nanostructured materials

TL;DR: In this paper, the authors summarized and analyzed the current understandings on the influence of various types of internal defect sinks on reduction of radiation damage in primarily nanostructured metallic materials, and partially on nanoceramic materials.
Journal ArticleDOI

Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys

TL;DR: In this paper, a set of modified embedded-atom method (MEAM) potentials for the interactions between Al, Si, Mg, Cu, and Fe was developed from a combination of each element's MEAM potential in order to study metal alloying.
Journal ArticleDOI

Modified embedded-atom method interatomic potentials for Ti and Zr

TL;DR: In this article, the authors have developed semiempirical interatomic potentials for two hcp elements, Ti and Zr, based on the modified embedded-atom method (MEAM) formalism.
Journal ArticleDOI

Nucleation and stability of twins in hcp metals

TL;DR: In this article, a three-dimensional model for twin nucleation in hcp materials based on the nonplanar dissociation of the leading dislocation in a pile-up of $⟨a⟩$ slip dislocations is proposed.
Journal ArticleDOI

First-principles Calculations of Twin-boundary and Stacking-fault Energies in Magnesium

TL;DR: In this article, the interfacial energies of twin boundaries and stacking faults in metal magnesium have been calculated using first-principles supercell approach, and the effects of supercell size on the calculated interfacial energy are examined.
References
More filters
Book

Dynamical Theory of Crystal Lattices

Max Born, +1 more
TL;DR: Born and Huang's classic work on the dynamics of crystal lattices was published over thirty years ago, and it remains the definitive treatment of the subject as mentioned in this paper. But it is not the most complete work on crystal lattice dynamics.
Journal ArticleDOI

Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals

TL;DR: In this paper, the authors derived an expression for the total energy of a metal using the embedding energy from which they obtained several ground-state properties, such as the lattice constant, elastic constants, sublimation energy, and vacancy-formation energy.
Book

Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook

TL;DR: In this paper, the authors present data on the elastic properties of single crystals collected from the literature through mid-1970 and the elastic property of isotropic aggregates which are calculated according to the schemes of Voigt and Reuss for all materials, and Hashin and Shtrikman for materials with cubic symmetry.
Journal ArticleDOI

A simple empirical N-body potential for transition metals

TL;DR: In this article, a simple form of multi-ion interaction has been constructed for the purpose of atomistic simulation of transition metals, which can account for experimental vacancy-formation energies and does not require an externally applied pressure to balance the Cauchy pressure.
Journal ArticleDOI

Modified embedded-atom potentials for cubic materials and impurities

TL;DR: In a comprehensive study, the modified embedded-atom method is extended to a variety of cubic materials and impurities, including metals, semiconductors, and diatomic gases, all of which exhibit different types of bonding.
Related Papers (5)