scispace - formally typeset
Open AccessJournal ArticleDOI

Analyzing time series gene expression data

Ziv Bar-Joseph
- 01 Nov 2004 - 
- Vol. 20, Iss: 16, pp 2493-2503
TLDR
This review is intended to serve as both, a point of reference for experimental biologists looking for practical solutions for analyzing their data, and a starting point for computer scientists interested in working on the computational problems related to time series expression analysis.
Abstract
Motivation: Time series expression experiments are an increasingly popular method for studying a wide range of biological systems. However, when analyzing these experiments researchers face many new computational challenges. Algorithms that are specifically designed for time series experiments are required so that we can take advantage of their unique features (such as the ability to infer causality from the temporal response pattern) and address the unique problems they raise (e.g. handling the different non-uniform sampling rates). Results: We present a comprehensive review of the current research in time series expression data analysis. We divide the computational challenges into four analysis levels: experimental design, data analysis, pattern recognition and networks. For each of these levels, we discuss computational and biological problems at that level and point out some of the methods that have been proposed to deal with these issues. Many open problems in all these levels are discussed. This review is intended to serve as both, a point of reference for experimental biologists looking for practical solutions for analyzing their data, and a starting point for computer scientists interested in working on the computational problems related to time series expression analysis.

read more

Content maybe subject to copyright    Report

Citations
More filters
DissertationDOI

State space time series clustering using discrepancies based on the Kullback-Leibler information and the Mahalanobis distance

TL;DR: In this article, the authors considered the clustering of time series data and developed discrepancy measures based on the estimated version of the state process, which can be modeled in the state space framework.
Journal ArticleDOI

An approach for reduction of false predictions in reverse engineering of gene regulatory networks

TL;DR: A novel scheme to decrease the number of false predictions by suitably combining several metaheuristic techniques is proposed, without using any supplementary prior biological information for larger gene regulatory networks.
Journal ArticleDOI

Comparison of Commonly Used Methods for Testing Interaction Effect in Time-Course Microarray Experiments

TL;DR: A comparison of Commonly Used Methods for Testing Interaction Effect in Time-Course Microarray Experiments shows the patterns of change across genes, tissue types, or experimental conditions are similar.
Proceedings ArticleDOI

Using Phylogenetic Relationships to Improve the Inference of Transcriptional Regulatory Networks

TL;DR: An inference algorithm is developed to take advantage of established phylogenetic relationships among a group of related organisms to improve the inference of regulatory networks for these organisms from expression data gathered under similar conditions and results indicate that gene-expression studies under identical conditions across a range of related organism could yield significantly more accurate regulatory networks than single-organism studies.
References
More filters
Journal ArticleDOI

Cluster analysis and display of genome-wide expression patterns

TL;DR: A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression, finding in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function.
Journal ArticleDOI

Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.

TL;DR: A generic approach to cancer classification based on gene expression monitoring by DNA microarrays is described and applied to human acute leukemias as a test case and suggests a general strategy for discovering and predicting cancer classes for other types of cancer, independent of previous biological knowledge.
Journal ArticleDOI

Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization

TL;DR: A comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle is created, and it is found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins.
Journal ArticleDOI

Genomic expression programs in the response of yeast cells to environmental changes.

TL;DR: Analysis of genomic expression patterns in the yeast Saccharomyces cerevisiae implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators.
Journal ArticleDOI

Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.

TL;DR: In this paper, a two-way clustering algorithm was applied to both the genes and the tissues, revealing broad coherent patterns that suggest a high degree of organization underlying gene expression in these tissues.
Related Papers (5)