scispace - formally typeset
Journal ArticleDOI

Antioxidant and Redox Regulation of Gene Transcription

Chandan K. Sen, +1 more
- 01 May 1996 - 
- Vol. 10, Iss: 7, pp 709-720
TLDR
The efficacy of different antioxidants to favorably influence the molecular mechanisms implicated in human disease should be a critical determinant of its selection for clinical studies.
Abstract
Reactive oxygen species (ROS) are implicated in the pathogenesis of a wide variety of human diseases. Recent evidence suggests that at moderately high concentrations, certain forms of ROS such as H202 may act as signal transduction messengers. To develop a better understanding of the exact mechanisms that underlie ROS-dependent disorders in biological systems, recent studies have investigated the regulation of gene expression by oxidants, antioxidants, and other determinants of the intracellular reduction-oxidation (redox) state. At least two well-defined transcription factors, nuclear factor (NF) kappa B and activator protein (AP) -1 have been identified to be regulated by the intracellular redox state. The regulation of gene expression by oxidants, antioxidants, and the redox state has emerged as a novel subdiscipline in molecular biology that has promising therapeutic implications. Binding sites of the redox-regulated transcription factors NF-kappa B and AP-1 are located in the promoter region of a large variety of genes that are directly involved in the pathogenesis of diseases, e.g., AIDS, cancer, atherosclerosis and diabetic complications. Biochemical and clinical studies have indicated that antioxidant therapy may be useful in the treatment of disease. Critical steps in the signal transduction cascade are sensitive to oxidants and antioxidants. Many basic events of cell regulation such as protein phosphorylation and binding of transcription factors to consensus sites on DNA are driven by physiological oxidant-antioxidant homeostasis, especially by the thiol-disulfide balance. Endogenous glutathione and thioredoxin systems, and the exogenous lipoate-dihydrolipoate couple may therefore be considered to be effective regulators of redox-sensitive gene expression. The efficacy of different antioxidants to favorably influence the molecular mechanisms implicated in human disease should be a critical determinant of its selection for clinical studies.

read more

Citations
More filters
Journal ArticleDOI

Free Radicals in the Physiological Control of Cell Function

Wulf Dröge
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Journal ArticleDOI

Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.

TL;DR: Estimates can be used to more fully understand the redox biochemistry that results from oxidative stress, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.
Journal ArticleDOI

The Free Radical Theory of Aging Matures

TL;DR: The status of the free radical theory of aging is reviewed, by categorizing the literature in terms of the various types of experiments that have been performed, which include phenomenological measurements of age-associated oxidative stress, interspecies comparisons, dietary restriction, and the ongoing elucidation of the role of active oxygen in biology.
Journal ArticleDOI

Ischemic Cell Death in Brain Neurons

TL;DR: A major unifying thread of the review is a consideration of how the changes occurring during and after ischemia conspire to produce damaging levels of free radicals and peroxynitrite to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process.
Journal ArticleDOI

Reactive oxygen species, antioxidants, and the mammalian thioredoxin system.

TL;DR: The TrxR-catalyzed regeneration of several antioxidant compounds, including ascorbic acid (vitamin C), selenium-containing substances, lipoic acid, and ubiquinone are summarized.
References
More filters
Journal ArticleDOI

Oxidative stress: oxidants and antioxidants

TL;DR: These low molecular mass antioxidant molecules add significantly to the defense provided by the enzymes superoxide dismutase, catalase and glutathione peroxidases, which are termed ‘oxidative stress’.
Journal ArticleDOI

Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1.

TL;DR: It is shown that micromolar concentrations of H2O2 can induce the expression and replication of HIV‐1 in a human T cell line and suggests that diverse agents thought to activate NF‐kappa B by distinct intracellular pathways might all act through a common mechanism involving the synthesis of ROI.
Journal ArticleDOI

Signal transduction by lymphocyte antigen receptors

TL;DR: Insight gained from studies of the signaling pathways downstream of TCR and BCR stimulation is likely to contribute significantly to future understanding of mechanisms responsible for lymphocyte differentiation and for the discrimination of self from nonself in developing and mature cells.
Journal ArticleDOI

alpha-Lipoic acid as a biological antioxidant.

TL;DR: The properties of lipoate are reviewed in terms of reactions with reactive oxygen species; interactions with other antioxidants; beneficial effects in oxidative stress models or clinical conditions.
Journal ArticleDOI

Redox regulation of fos and jun DNA-binding activity in vitro

TL;DR: DNA binding of the Fos-Jun heterodimer was modulated by reduction-oxidation of a single conserved cysteine residue in the DNA-binding domains of the two proteins, suggesting that transcriptional activity mediated by AP-1 binding factors may be regulated by a redox mechanism.
Related Papers (5)