scispace - formally typeset
Journal ArticleDOI

Attosecond real-time observation of electron tunnelling in atoms

TLDR
The real-time observation of this most elementary step in strong-field interactions: light-induced electron tunnelling is reported, and the process is found to deplete atomic bound states in sharp steps lasting several hundred attoseconds, suggesting a new technique, attose Cond Tunnelling, for probing short-lived, transient states of atoms or molecules with high temporal resolution.
Abstract
Atoms exposed to intense light lose one or more electrons and become ions. In strong fields, the process is predicted to occur via tunnelling through the binding potential that is suppressed by the light field near the peaks of its oscillations. Here we report the real-time observation of this most elementary step in strong-field interactions: light-induced electron tunnelling. The process is found to deplete atomic bound states in sharp steps lasting several hundred attoseconds. This suggests a new technique, attosecond tunnelling, for probing short-lived, transient states of atoms or molecules with high temporal resolution. The utility of attosecond tunnelling is demonstrated by capturing multi-electron excitation (shake-up) and relaxation (cascaded Auger decay) processes with subfemtosecond resolution.

read more

Citations
More filters
Proceedings Article

Attosecond Physics

TL;DR: In this paper, an attosecond "oscilloscope" was used to visualize the oscillating electric field of visible light with an oscillator and probe multi-electron dynamics in atoms, molecules and solids.
Journal ArticleDOI

Single-cycle nonlinear optics.

TL;DR: The confinement of the nonlinear interaction of light with matter to a single wave cycle is reported on and its utility for time-resolved and strong-field science is demonstrated.
Journal ArticleDOI

Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses

TL;DR: The application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine and the subsequent detection of ultrafast dynamics on a sub–4.5-femtosecond temporal scale, which is shorter than the vibrational response of the molecule.
Journal ArticleDOI

Attosecond Ionization and Tunneling Delay Time Measurements in Helium

TL;DR: The technique relies on establishing an absolute reference point in the laboratory frame by elliptical polarization of the laser pulse, from which field-induced momentum shifts of the emergent electron can be assigned to a temporal delay on the basis of the known oscillation of the field vector.
References
More filters
Journal ArticleDOI

Intense few-cycle laser fields: Frontiers of nonlinear optics

TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Journal ArticleDOI

Attosecond control of electronic processes by intense light fields

TL;DR: The generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty are reported.
Journal ArticleDOI

Isolated Single-Cycle Attosecond Pulses

TL;DR: The availability of single-cycle isolated attosecond pulses opens the way to a new regime in ultrafast physics, in which the strong-field electron dynamics in atoms and molecules is driven by the electric field of the attose Cond pulses rather than by their intensity profile.
Journal ArticleDOI

Time-resolved atomic inner-shell spectroscopy

TL;DR: It is demonstrated that a laser-based sampling system, consisting of a few-femtosecond visible light pulse and a synchronized sub-feminine soft X-ray pulse, allows us to trace the relaxation dynamics of core-excited atoms directly in the time domain with attosecond resolution.
Related Papers (5)