scispace - formally typeset
Open AccessBook

Bayesian Modeling of Uncertainty in Low-Level Vision

Reads0
Chats0
TLDR
The uncertainty modeling techniques that are developed, and the utility of these techniques in various applications, support the claim that Bayesian modeling is a powerful and practical framework for low-level vision.
Abstract
Over the last decade, many low-level vision algorithms have been devised for extracting depth from one or more intensity images. The output of such algorithms usually contains no indication of the uncertainty associated with the scene reconstruction. In other areas of computer vision and robotics, the need for such error modeling is becoming recognized, both because of the uncertainty inherent in sensing and because of the desire to integrate information from different sensors or viewpoints. In this thesis, we develop a new Bayesian model for the dense fields that are commonly used in low-level vision. The Bayesian model consists of three components: a prior model, a sensor model, and a posterior model. The prior model captures any a priori information about the structure of the dense field. We construct this model by using the smoothness constraints for regularization to define a Markov Random Field. The sensor model describes the behaviour and noise characteristics of our measurement system. We develop a number of sensor models for both sparse depth measurements and dense flow or intensity measurements. The posterior model combines the information from the prior and sensor models using Bayes' Rule, and can be used as the input to later stages of processing. We show how to compute optimal estimates from the posterior model, and also how to compute the uncertainty (variance) in these estimates. This thesis applies Bayesian modeling to a number of low-level vision problems. The main application is the on-line extraction of depth from motion. For this application, we use a two-dimensional generalization of the Kalman filter to convert the current posterior model into a prior model for the next estimate. The resulting incremental algorithm provides a dense on-line estimate of depth whose uncertainty and error are reduced over time. Other applications of Bayesian modeling, include the choice of optimal smoothing parameter for interpolation; the determination of observer motion from sparse depth measurements without correspondence; and the construction of multiresolution relative surface representations. The approach to uncertainty modeling which we develop, and the utility of this approach in various applications, support our thesis that Bayesian modeling is a useful and practical framework for low-level vision.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A taxonomy and evaluation of dense two-frame stereo correspondence algorithms

TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Journal ArticleDOI

Fast approximate energy minimization via graph cuts

TL;DR: This work presents two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves that allow important cases of discontinuity preserving energies.
Book

Computer Vision: Algorithms and Applications

TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Proceedings ArticleDOI

Fast approximate energy minimization via graph cuts

TL;DR: This paper proposes two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed, and generates a labeling such that there is no expansion move that decreases the energy.
Journal ArticleDOI

Deformable models in medical image analysis: a survey

TL;DR: The rapidly expanding body of work on the development and application of deformable models to problems of fundamental importance in medical image analysis, including segmentation, shape representation, matching and motion tracking is reviewed.
References
More filters
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Journal ArticleDOI

Equation of state calculations by fast computing machines

TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Journal ArticleDOI

A Computational Approach to Edge Detection

TL;DR: There is a natural uncertainty principle between detection and localization performance, which are the two main goals, and with this principle a single operator shape is derived which is optimal at any scale.
Book

The Fractal Geometry of Nature

TL;DR: This book is a blend of erudition, popularization, and exposition, and the illustrations include many superb examples of computer graphics that are works of art in their own right.
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.