scispace - formally typeset
Open AccessProceedings Article

Benchmarking deep reinforcement learning for continuous control

TLDR
In this paper, the authors present a benchmark suite of continuous control tasks, including classic tasks like cart-pole swing-up, tasks with high state and action dimensionality such as 3D humanoid locomotion, and tasks with partial observations.
Abstract
Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning. Some notable examples include training agents to play Atari games based on raw pixel data and to acquire advanced manipulation skills using raw sensory inputs. However, it has been difficult to quantify progress in the domain of continuous control due to the lack of a commonly adopted benchmark. In this work, we present a benchmark suite of continuous control tasks, including classic tasks like cart-pole swing-up, tasks with very high state and action dimensionality such as 3D humanoid locomotion, tasks with partial observations, and tasks with hierarchical structure. We report novel findings based on the systematic evaluation of a range of implemented reinforcement learning algorithms. Both the benchmark and reference implementations are released at https://github.com/rllab/rllab in order to facilitate experimental reproducibility and to encourage adoption by other researchers.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Proximal Policy Optimization Algorithms

TL;DR: A new family of policy gradient methods for reinforcement learning, which alternate between sampling data through interaction with the environment, and optimizing a "surrogate" objective function using stochastic gradient ascent, are proposed.
Proceedings Article

Model-agnostic meta-learning for fast adaptation of deep networks

TL;DR: An algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning is proposed.
Journal ArticleDOI

A brief survey of deep reinforcement learning

TL;DR: This survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic, and highlight the unique advantages of deep neural networks, focusing on visual understanding via RL.
Proceedings Article

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

TL;DR: This paper proposes soft actor-critic, an off-policy actor-Critic deep RL algorithm based on the maximum entropy reinforcement learning framework, and achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off- policy methods.
Posted Content

Evolution Strategies as a Scalable Alternative to Reinforcement Learning.

TL;DR: This work explores the use of Evolution Strategies (ES), a class of black box optimization algorithms, as an alternative to popular MDP-based RL techniques such as Q-learning and Policy Gradients, and highlights several advantages of ES as a blackbox optimization technique.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

ImageNet classification with deep convolutional neural networks

TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Related Papers (5)