scispace - formally typeset
Journal ArticleDOI: 10.1038/S41571-021-00479-Z

Cancer therapies based on targeted protein degradation - lessons learned with lenalidomide.

02 Mar 2021-Nature Reviews Clinical Oncology (Nature Publishing Group)-Vol. 18, Iss: 7, pp 401-417
Abstract: For decades, anticancer targeted therapies have been designed to inhibit kinases or other enzyme classes and have profoundly benefited many patients. However, novel approaches are required to target transcription factors, scaffolding proteins and other proteins central to cancer biology that typically lack catalytic activity and have remained mostly recalcitrant to drug development. The selective degradation of target proteins is an attractive approach to expand the druggable proteome, and the selective oestrogen receptor degrader fulvestrant served as an early example of this concept. Following a long and tragic history in the clinic, the immunomodulatory imide drug (IMiD) thalidomide was discovered to exert its therapeutic activity via a novel and unexpected mechanism of action: targeting proteins to an E3 ubiquitin ligase for subsequent proteasomal degradation. This discovery has paralleled and directly catalysed myriad breakthroughs in drug development, leading to the rapid maturation of generalizable chemical platforms for the targeted degradation of previously undruggable proteins. Decades of clinical experience have established front-line roles for thalidomide analogues, including lenalidomide and pomalidomide, in the treatment of haematological malignancies. With a new generation of ‘degrader’ drugs currently in development, this experience provides crucial insights into class-wide features of degraders, including a unique pharmacology, mechanisms of resistance and emerging therapeutic opportunities. Herein, we review these past experiences and discuss their application in the clinical development of novel degrader therapies. The discovery that the anticancer activity of thalidomide and its analogues, such as lenalidomide, reflects drug-induced degradation of specific target proteins has heightened interest in novel ‘degrader’ drugs. Herein, the authors review the wide and expanding use of thalidomide analogues in the treatment of multiple cancers and outline how lessons learned from this experience, particularly with lenalidomide, can guide the clinical development of new targeted protein degradation platforms.

... read more

Topics: Protein degradation (57%), Drug development (53%), Druggability (51%)
Citations
  More

6 results found


Open accessJournal ArticleDOI: 10.3390/CELLS10071577
22 Jun 2021-Cells
Abstract: The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.

... read more

3 Citations


Journal ArticleDOI: 10.1002/BIES.202100057
15 Apr 2021-BioEssays
Abstract: Deciphering how DCAFs (DDB1-CUL4 Associated Factors) modulate a broad spectrum of cellular processes, including cell cycle progression and maintenance of genomic integrity is critical to better understand cellular homeostasis and diseases. Cells contain more than 100 DCAFs that associate with the Cullin-Ring Ubiquitin Ligase 4 (CRL4) complex that target specific protein substrates for degradation. DCAFs are thought to act as substrate receptors that dictate the specificity of the ubiquitination machinery ("catalytic DCAFs"). However, recent studies have suggested that some DCAFs might play a different role by targeting CRL4 complexes to distinct cellular compartments ("structural DCAFs"). Once localized to their correct cellular domains, these CRLs dissociate from the structural DCAFs prior to their association with other, substrate-specific catalytic DCAFs. Thus, we propose that DCAF switches can provide a mechanistic basis for the degradation of proteins that regulate cell growth and proliferation at precise points in space and time.

... read more

Topics: Cellular homeostasis (59%), Ubiquitin ligase (56%)

1 Citations


Open accessJournal ArticleDOI: 10.3390/CANCERS13205084
Isaac Park1, Tra Mi Phan1, Jing Fang1Institutions (1)
11 Oct 2021-Cancers
Abstract: Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in hematologic malignancies, relapse and resistance remains a problem in IMiD-based therapy. The last ten years have witnessed the discovery of novel molecular mechanism of IMiD-based anti-tumor therapy. IMiDs bind human cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase complex. Binding of CRBN with IMiDs leads to degradation of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) and casein kinase 1 alpha. We have found that lenalidomide-mediated degradation of IKZF1 leads to activation of the G protein-coupled receptor 68 (GPR68)/calcium/calpain pro-apoptotic pathway and inhibition of the regulator of calcineurin 1 (RCAN1)/calcineurin pro-survival pathway in MDS and acute myeloid leukemia (AML). Calcineurin inhibitor Cyclosporin-A potentiates the anti-leukemia activity of lenalidomide in MDS/AML with or without del(5q). These findings broaden the therapeutic potential of IMiDs. This review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets.

... read more

Topics: Cereblon (57%), Lenalidomide (56%), Myeloid leukemia (53%) ... show more

Open accessDOI: 10.1016/J.CRCHBI.2021.100011
Yuxiang Zhang1, Michael A. Erb1Institutions (1)
01 Jan 2021-
Abstract: Recent technological advances have improved the ability of functional genetic approaches to discover new targets for anti-cancer therapeutics. At the same time, advances in discovery chemistry promise to deliver on an ever-larger fraction of these new targets. However, the fundamental difference in the kinetics of genetic and chemical perturbations can make it difficult to judge the performance of new chemical tools when only genetic information is available. Here, we review a series of genetically encoded, ligand-inducible protein degradation systems that can bridge the gap between genetics and pharmacology. These approaches rely on tagging a protein of interest with a small-molecule-responsive degron that enables conditional protein degradation. Given their rapid effects, these systems can facilitate mechanistic interpretations that are not typically possible using traditional genetic approaches. Therefore, inducible degradation systems can be employed at the earliest stages of target validation to provide mechanistic insights that will better guide future drug discovery efforts.

... read more

Topics: Protein degradation (61%), Drug discovery (51%)

Open accessJournal ArticleDOI: 10.7150/IJBS.61117
Zhikun Zheng1, Bin Zhang1, Haixin Yu1, Shoukang Li1  +3 moreInstitutions (2)
Abstract: Background: Esophageal cancer is the sixth-most common fatal malignant tumor worldwide. Little is known regarding the genetic drivers that influence targeted therapy outcomes in patients with esophageal cancer. Exploring the pathogenesis of this lethal tumor could provide clues for developing appropriate therapeutic drugs. Ubiquitin-protein ligase E3A (UBE3A) reportedly promotes or suppresses various types of malignant tumors. However, the cancer-related role of UBE3A in esophageal cancer remains unclear. Methods: The relationship of UBE3A with the clinicopathological features of pancreatic tumors was bioinformatically investigated in the TCGA dataset. The protein levels of UBE3A and ZNF185 were assessed by Western blot and immunohistochemistry. The role of UBE3A and ZNF185 in esophageal cancer growth was assessed by MTS assays, colony formation assays, and experiments in mouse xenograft models. The interaction between UBE3A and ZNF185 was investigated by co-immunoprecipitation. The relationship between UBE3A, ZNF185, and NOTCH signaling pathway was explored by Western blot and quantitative real-time PCR. Results: We found that UBE3A was upregulated in patients with esophageal cancer and enhanced the cellular progression of esophageal cancer. Moreover, we found that UBE3A degraded ZNF185 in esophageal cancer. Additionally, ZNF185 suppressed the progression of esophageal cancer by inactivating the NOTCH pathway. Conclusions: These data demonstrated that aberrant expression of UBE3A led to enhanced progression of esophageal cancer through the ZNF185/NOTCH signaling axis. Therefore, UBE3A might be an ideal therapeutic candidate for esophageal cancer.

... read more


References
  More

239 results found


Journal ArticleDOI: 10.1056/NEJM199911183412102
Seema Singhal1, Jayesh Mehta1, Raman Desikan2, D Ayers2  +8 moreInstitutions (3)
Abstract: Background Patients with myeloma who relapse after high-dose chemotherapy have few therapeutic options. Since increased bone marrow vascularity imparts a poor prognosis in myeloma, we evaluated the efficacy of thalidomide, which has antiangiogenic properties, in patients with refractory disease. Methods Eighty-four previously treated patients with refractory myeloma (76 with a relapse after high-dose chemotherapy) received oral thalidomide as a single agent for a median of 80 days (range, 2 to 465). The starting dose was 200 mg daily, and the dose was increased by 200 mg every two weeks until it reached 800 mg per day. Response was assessed on the basis of a reduction of the myeloma protein in serum or Bence Jones protein in urine that lasted for at least six weeks. Results The serum or urine levels of paraprotein were reduced by at least 90 percent in eight patients (two had a complete remission), at least 75 percent in six patients, at least 50 percent in seven patients, and at least 25 percent in six p...

... read more

Topics: Thalidomide (57%), Myeloma protein (56%), Pomalidomide (55%) ... show more

2,409 Citations


Open accessJournal ArticleDOI: 10.1073/PNAS.91.9.4082
Abstract: Thalidomide is a potent teratogen causing dysmelia (stunted limb growth) in humans. We have demonstrated that orally administered thalidomide is an inhibitor of angiogenesis induced by basic fibroblast growth factor in a rabbit cornea micropocket assay. Experiments including the analysis of thalidomide analogs revealed that the antiangiogenic activity correlated with the teratogenicity but not with the sedative or the mild immunosuppressive properties of thalidomide. Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature of thalidomide-treated embryos. These experiments shed light on the mechanism of thalidomide's teratogenicity and hold promise for the potential use of thalidomide as an orally administered drug for the treatment of many diverse diseases dependent on angiogenesis.

... read more

Topics: Thalidomide (61%), Neovascularization (52%)

2,303 Citations


Journal ArticleDOI: 10.1146/ANNUREV-BIOCHEM-060310-170328
David Komander1, Michael Rape2Institutions (2)
Abstract: The posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells. Ubiquitin can be attached to substrate proteins as a single moiety or in the form of polymeric chains in which successive ubiquitin molecules are connected through specific isopeptide bonds. Reminiscent of a code, the various ubiquitin modifications adopt distinct conformations and lead to different outcomes in cells. Here, we discuss the structure, assembly, and function of this ubiquitin code.

... read more

Topics: Ubiquitin ligase (70%), OTUB1 (68%), Deubiquitinating enzyme (62%) ... show more

2,255 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2017.05.016
Roel Nusse1, Hans Clevers2Institutions (2)
01 Jun 2017-Cell
Abstract: The WNT signal transduction cascade is a main regulator of development throughout the animal kingdom. Wnts are also key drivers of most types of tissue stem cells in adult mammals. Unsurprisingly, mutated Wnt pathway components are causative to multiple growth-related pathologies and to cancer. Here, we describe the core Wnt/β-catenin signaling pathway, how it controls stem cells, and contributes to disease. Finally, we discuss strategies for Wnt-based therapies.

... read more

Topics: Wnt signaling pathway (66%), Stem cell (52%)

1,735 Citations


Journal ArticleDOI: 10.1056/NEJMOA070594
Abstract: Background Lenalidomide is a structural analogue of thalidomide with similar but more potent biologic activity. This phase 3, placebo-controlled trial investigated the efficacy of lenalidomide plus dexamethasone in the treatment of relapsed or refractory multiple myeloma. Methods Of 351 patients who had received at least one previous antimyeloma therapy, 176 were randomly assigned to receive 25 mg of oral lenalidomide and 175 to receive placebo on days 1 to 21 of a 28-day cycle. In addition, all patients received 40 mg of oral dexamethasone on days 1 to 4, 9 to 12, and 17 to 20 for the first four cycles and subsequently, after the fourth cycle, only on days 1 to 4. Patients continued in the study until the occurrence of disease progression or unacceptable toxic effects. The primary end point was time to progression. Results The time to progression was significantly longer in the patients who received lenalidomide plus dexamethasone (lenalidomide group) than in those who received placebo plus dexamethasone...

... read more

Topics: Lenalidomide (63%), Thalidomide (56%), Dexamethasone (55%) ... show more

1,318 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20216