scispace - formally typeset
Open AccessProceedings ArticleDOI

Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

TLDR
The authors explore weight pruning for BERT and find that low levels of pruning (30-40%) do not affect pre-training loss or transfer to downstream tasks at all.
Abstract
Pre-trained universal feature extractors, such as BERT for natural language processing and VGG for computer vision, have become effective methods for improving deep learning models without requiring more labeled data. While effective, feature extractors like BERT may be prohibitively large for some deployment scenarios. We explore weight pruning for BERT and ask: how does compression during pre-training affect transfer learning? We find that pruning affects transfer learning in three broad regimes. Low levels of pruning (30-40%) do not affect pre-training loss or transfer to downstream tasks at all. Medium levels of pruning increase the pre-training loss and prevent useful pre-training information from being transferred to downstream tasks. High levels of pruning additionally prevent models from fitting downstream datasets, leading to further degradation. Finally, we observe that fine-tuning BERT on a specific task does not improve its prunability. We conclude that BERT can be pruned once during pre-training rather than separately for each task without affecting performance.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Pre-Trained Models: Past, Present and Future

TL;DR: In this paper, the authors take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum.
Posted Content

Parameter-Efficient Transfer Learning with Diff Pruning.

TL;DR: Diff pruning can match the performance of finetuned baselines on the GLUE benchmark while only modifying 0.5% of the pretrained model’s parameters per task and scales favorably in comparison to popular pruning approaches.
Journal ArticleDOI

Compressing Large-Scale Transformer-Based Models: A Case Study on BERT

TL;DR: This systematic study identifies the state of the art in compression for each part of BERT, clarifies current best practices for compressing large-scale Transformer models, and provides insights into the inner workings of various methods.
Posted Content

Scalable Visual Transformers with Hierarchical Pooling

TL;DR: A Hierarchical Visual Transformer (HVT) is proposed which progressively pools visual tokens to shrink the sequence length and hence reduces the computational cost, analogous to the feature maps downsampling in Convolutional Neural Networks (CNNs).
Proceedings ArticleDOI

ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers

TL;DR: This work is able to show that ZeroQuant can reduce the precision for weights and activations to INT8 in a cost-free way for both BERT and GPT-3-style models with minimal accuracy impact, which leads to up to 5.19x/4.16x speedup on those models compared to FP16 inference.
References
More filters
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Attention is All you Need

TL;DR: This paper proposed a simple network architecture based solely on an attention mechanism, dispensing with recurrence and convolutions entirely and achieved state-of-the-art performance on English-to-French translation.
Proceedings ArticleDOI

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

TL;DR: BERT as mentioned in this paper pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Posted Content

RoBERTa: A Robustly Optimized BERT Pretraining Approach

TL;DR: It is found that BERT was significantly undertrained, and can match or exceed the performance of every model published after it, and the best model achieves state-of-the-art results on GLUE, RACE and SQuAD.
Proceedings ArticleDOI

Deep contextualized word representations

TL;DR: This paper introduced a new type of deep contextualized word representation that models both complex characteristics of word use (e.g., syntax and semantics), and how these uses vary across linguistic contexts (i.e., to model polysemy).
Related Papers (5)