scispace - formally typeset
Open AccessJournal ArticleDOI

Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation

Reads0
Chats0
TLDR
This paper showed that the global star formation rate, as indicated by the infrared luminosity, has a tight and almost linear correlation with the amount of dense gas as traced by the luminosity of HCN.
Abstract
Observations have revealed prodigious amounts of star formation in starburst galaxies as traced by dust and molecular emission, even at large redshifts. Recent work shows that for both nearby spiral galaxies and distant starbursts, the global star formation rate, as indicated by the infrared luminosity, has a tight and almost linear correlation with the amount of dense gas as traced by the luminosity of HCN. Our surveys of Galactic dense cores in HCN 1-0 emission show that this correlation continues to a much smaller scale, with nearly the same ratio of infrared luminosity to HCN luminosity found over 7-8 orders of magnitude in, with a lower cutoff L(IR) around 10(4.5) L(circle dot) of infrared luminosity. The linear correlation suggests that we may understand distant star, formation in terms of the known properties of local star-forming regions. Both the correlation and the luminosity cutoff can be explained if the basic unit of star formation in galaxies is a dense core, similar to those studied in our Galaxy.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Star Formation in the Milky Way and Nearby Galaxies

TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Journal ArticleDOI

Theory of Star Formation

TL;DR: In this paper, an overall theoretical framework and the observations that motivate it are outlined, outlining the key dynamical processes involved in star formation, including turbulence, magnetic fields, and self-gravity.
Journal ArticleDOI

Cool Gas in High-Redshift Galaxies

TL;DR: In the last decade, observations of the cool interstellar medium (ISM) in distant galaxies via molecular and atomic fine structure line (FSL) emission have gone from a curious look into a few extreme, rare objects to a mainstream tool for studying galaxy formation out to the highest redshifts as mentioned in this paper.
Journal ArticleDOI

On the Star Formation Rates in Molecular Clouds

TL;DR: In this article, the authors employ a uniform set of infrared extinction maps to provide accurate assessments of cloud mass and structure and compare these with inventories of young stellar objects within the clouds, finding that both the yield and rate of star formation can vary considerably in local clouds, independent of their mass and size.
References
More filters
Journal ArticleDOI

The Global Schmidt law in star forming galaxies

TL;DR: In this paper, the Schmidt law was used to model the global star formation law over the full range of gas densities and star formation rates observed in galaxies, and the results showed that the SFR scales with the ratio of the gas density to the average orbital timescale.
Journal ArticleDOI

The Global Schmidt Law in Star Forming Galaxies

TL;DR: In this paper, the Schmidt law was used to model the global star formation law, over the full range of gas densities and star formation rates (SFRs) observed in galaxies.
Journal ArticleDOI

Embedded Clusters in Molecular Clouds

TL;DR: The first extensive catalog of galactic embedded clusters is compiled, finding that the embedded cluster birthrate exceeds that of visible open clusters by an order of magnitude or more indicating a high infant mortality rate for protocluster systems.
Journal ArticleDOI

Luminous infrared galaxies

TL;DR: At the highest luminosities (Lir > 1012 ), nearly all objects appear to be advanced mergers powered by a mixture of circumnuclear starburst and active galactic nucleus energy sources, both of which are fueled by an enormous concentration of molecular gas that has been funneled into the merger nucleus as discussed by the authors.
Journal ArticleDOI

The Rate of Star Formation

Related Papers (5)