scispace - formally typeset
Open AccessBook

Constraint Processing

Rina Dechter
Reads0
Chats0
TLDR
Rina Dechter synthesizes three decades of researchers work on constraint processing in AI, databases and programming languages, operations research, management science, and applied mathematics to provide the first comprehensive examination of the theory that underlies constraint processing algorithms.
Abstract
Constraint satisfaction is a simple but powerful tool. Constraints identify the impossible and reduce the realm of possibilities to effectively focus on the possible, allowing for a natural declarative formulation of what must be satisfied, without expressing how. The field of constraint reasoning has matured over the last three decades with contributions from a diverse community of researchers in artificial intelligence, databases and programming languages, operations research, management science, and applied mathematics. Today, constraint problems are used to model cognitive tasks in vision, language comprehension, default reasoning, diagnosis, scheduling, temporal and spatial reasoning. In Constraint Processing, Rina Dechter, synthesizes these contributions, along with her own significant work, to provide the first comprehensive examination of the theory that underlies constraint processing algorithms. Throughout, she focuses on fundamental tools and principles, emphasizing the representation and analysis of algorithms. ·Examines the basic practical aspects of each topic and then tackles more advanced issues, including current research challenges ·Builds the reader's understanding with definitions, examples, theory, algorithms and complexity analysis ·Synthesizes three decades of researchers work on constraint processing in AI, databases and programming languages, operations research, management science, and applied mathematics Table of Contents Preface; Introduction; Constraint Networks; Consistency-Enforcing Algorithms: Constraint Propagation; Directional Consistency; General Search Strategies; General Search Strategies: Look-Back; Local Search Algorithms; Advanced Consistency Methods; Tree-Decomposition Methods; Hybrid of Search and Inference: Time-Space Trade-offs; Tractable Constraint Languages; Temporal Constraint Networks; Constraint Optimization; Probabilistic Networks; Constraint Logic Programming; Bibliography

read more

Citations
More filters
Journal ArticleDOI

AND/OR Branch-and-Bound search for combinatorial optimization in graphical models

TL;DR: This is the first of two papers presenting and evaluating the power of a new framework for combinatorial optimization in graphical models, based on AND/OR search spaces, and introduces a new generation of depth-first Branch-and-Bound algorithms that explore the AND/or search tree using static and dynamic variable orderings.
Proceedings Article

Simple search methods for finding a Nash equilibrium

TL;DR: Two simple search methods for computing a sample Nash equilibrium in a normal-form game are presented: one for 2- player games and one for n-player games, which perform well against the state of the art.
Journal ArticleDOI

Team-building with answer set programming in the gioia-tauro seaport

TL;DR: In this paper, a system based on Answer Set Programming (ASP) for automatic generation of the teams of employees in the seaport of Gioia Tauro is presented.
Posted Content

Learning Dependency-Based Compositional Semantics

TL;DR: In this article, a dependency-based compositional semantics (DCS) formalism is proposed to learn a semantic parser from question-answer pairs instead, where the logical form is modeled as a latent variable.
Posted Content

Conjunctive Queries over Trees

TL;DR: A framework for characterizing structures representing trees for which conjunctive queries can be evaluated efficiently is established and all polynomial-time results are obtained immediately using the proof techniques from the framework.
References
More filters
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Book

Computers and Intractability: A Guide to the Theory of NP-Completeness

TL;DR: The second edition of a quarterly column as discussed by the authors provides a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., San Francisco, 1979.
Book

Introduction to Algorithms

TL;DR: The updated new edition of the classic Introduction to Algorithms is intended primarily for use in undergraduate or graduate courses in algorithms or data structures and presents a rich variety of algorithms and covers them in considerable depth while making their design and analysis accessible to all levels of readers.
Book

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.