scispace - formally typeset
Journal ArticleDOI

Construction of crystalline 2D covalent organic frameworks with remarkable chemical (Acid/Base) stability via a combined reversible and irreversible route

Reads0
Chats0
TLDR
Two new chemically stable [acid and base] 2D crystalline covalent organic frameworks (COFs) were synthesized using combined reversible and irreversible organic reactions and showed strong resistance toward acid and boiling water and exceptional stability in base.
Abstract
Two new chemically stable [acid and base] 2D crystalline covalent organic frameworks (COFs) (TpPa-1 and TpPa-2) were synthesized using combined reversible and irreversible organic reactions. Syntheses of these COFs were done by the Schiff base reactions of 1,3,5-triformylphloroglucinol (Tp) with p-phenylenediamine (Pa-1) and 2,5-dimethyl-p-phenylenediamine (Pa-2), respectively, in 1:1 mesitylene/dioxane. The expected enol–imine (OH) form underwent irreversible proton tautomerism, and only the keto–enamine form was observed. Because of the irreversible nature of the total reaction and the absence of an imine bond in the system, TpPa-1 and TpPa-2 showed strong resistance toward acid (9 N HCl) and boiling water. Moreover, TpPa-2 showed exceptional stability in base (9 N NaOH) as well.

read more

Citations
More filters
Journal ArticleDOI

The atom, the molecule, and the covalent organic framework

TL;DR: The ability to design COFs and to adjust their pore metrics using the principles of reticular synthesis has given rise to frameworks with ultralow densities, which has resulted in the first implementation of the concept of molecular weaving.
Journal ArticleDOI

Covalent Organic Frameworks: Design, Synthesis, and Functions.

TL;DR: A comprehensive review of the COF field is targeted, providing a historic overview of the chemistry, the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, and scrutinize the development and potential of various functions through elucidating structure-function correlations.
Journal ArticleDOI

Covalent organic frameworks: a materials platform for structural and functional designs

TL;DR: Covalent organic frameworks (COFs) are a class of crystalline porous polymer that allows the atomically precise integration of organic units into extended structures with periodic skeletons and ordered nanopores as mentioned in this paper.
Journal ArticleDOI

Chemistry of Covalent Organic Frameworks

TL;DR: Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COF, and this advantage has facilitated their characterization using powder X-ray diffraction techniques, which has allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture.
Journal ArticleDOI

An atlas of two-dimensional materials

TL;DR: This Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities of atomically thin materials, as well as rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks.
References
More filters
Journal ArticleDOI

Porous, Crystalline, Covalent Organic Frameworks

TL;DR: Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid and hexahydroxytriphenylene to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms.
Journal ArticleDOI

Covalent organic frameworks

TL;DR: This tutorial review describes the basic design concepts, the recent synthetic advancements and structural studies, and the frontiers of functional exploration of covalent organic frameworks.
Journal ArticleDOI

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications

TL;DR: Findings place COFs among the most porous and the best adsorbents for hydrogen, methane, and carbon dioxide.
Journal ArticleDOI

Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction.

TL;DR: The first application of a new COF material, COF-LZU1, for highly efficient catalysis, which possesses a two-dimensional eclipsed layered-sheet structure, making its incorporation with metal ions feasible.
Related Papers (5)