scispace - formally typeset
Open AccessPosted Content

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges

TLDR
ContinContinual Learning (CL) is a particular machine learning paradigm where the data distribution and learning objective changes through time, or where all the training data and objective criteria are never available at once as mentioned in this paper.
Abstract
Continual learning (CL) is a particular machine learning paradigm where the data distribution and learning objective changes through time, or where all the training data and objective criteria are never available at once. The evolution of the learning process is modeled by a sequence of learning experiences where the goal is to be able to learn new skills all along the sequence without forgetting what has been previously learned. Continual learning also aims at the same time at optimizing the memory, the computation power and the speed during the learning process. An important challenge for machine learning is not necessarily finding solutions that work in the real world but rather finding stable algorithms that can learn in real world. Hence, the ideal approach would be tackling the real world in a embodied platform: an autonomous agent. Continual learning would then be effective in an autonomous agent or robot, which would learn autonomously through time about the external world, and incrementally develop a set of complex skills and knowledge. Robotic agents have to learn to adapt and interact with their environment using a continuous stream of observations. Some recent approaches aim at tackling continual learning for robotics, but most recent papers on continual learning only experiment approaches in simulation or with static datasets. Unfortunately, the evaluation of those algorithms does not provide insights on whether their solutions may help continual learning in the context of robotics. This paper aims at reviewing the existing state of the art of continual learning, summarizing existing benchmarks and metrics, and proposing a framework for presenting and evaluating both robotics and non robotics approaches in a way that makes transfer between both fields easier.

read more

Citations
More filters
Posted Content

Learning without Forgetting

TL;DR: This work proposes the Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities, and performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques.
Journal ArticleDOI

A continual learning survey: Defying forgetting in classification tasks.

TL;DR: This work focuses on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries and study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
Posted Content

Explainability in Deep Reinforcement Learning

TL;DR: This work reviews recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms.
Posted Content

Latent Replay for Real-Time Continual Learning

TL;DR: This paper introduces an original technique named Latent Replay where, instead of storing a portion of past data in the input space, it is proposed to store activations volumes at some intermediate layer, which can significantly reduce the computation and storage required by native rehearsal.
Posted Content

A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning.

TL;DR: It is argued that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Book

Artificial Intelligence: A Modern Approach

TL;DR: In this article, the authors present a comprehensive introduction to the theory and practice of artificial intelligence for modern applications, including game playing, planning and acting, and reinforcement learning with neural networks.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Related Papers (5)