scispace - formally typeset
Open AccessProceedings Article

Continuous control with deep reinforcement learning

TLDR
In this paper, an actor-critic, model-free algorithm based on the deterministic policy gradient is proposed to operate over continuous action spaces, which is able to find policies whose performance is competitive with those found by a planning algorithm with full access to the dynamics of the domain.
Abstract
We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain. We present an actor-critic, model-free algorithm based on the deterministic policy gradient that can operate over continuous action spaces. Using the same learning algorithm, network architecture and hyper-parameters, our algorithm robustly solves more than 20 simulated physics tasks, including classic problems such as cartpole swing-up, dexterous manipulation, legged locomotion and car driving. Our algorithm is able to find policies whose performance is competitive with those found by a planning algorithm with full access to the dynamics of the domain and its derivatives. We further demonstrate that for many of the tasks the algorithm can learn policies end-to-end: directly from raw pixel inputs.

read more

Citations
More filters
Journal ArticleDOI

Deep Reinforcement Learning: A Brief Survey

TL;DR: Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence (AI) and represents a step toward building autonomous systems with a higher-level understanding of the visual world as discussed by the authors.
Journal ArticleDOI

Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

TL;DR: This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking, and presents applications of DRL for traffic routing, resource sharing, and data collection.
Proceedings ArticleDOI

Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates

TL;DR: In this article, a deep reinforcement learning algorithm based on off-policy training of deep Q-functions can scale to complex 3D manipulation tasks and can learn deep neural network policies efficiently enough to train on real physical robots.
Posted Content

Deep Reinforcement Learning: An Overview

Yuxi Li
- 25 Jan 2017 - 
TL;DR: This work discusses core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration, and important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn.
Proceedings Article

QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation

TL;DR: QT-Opt as mentioned in this paper is a scalable self-supervised vision-based reinforcement learning framework that can leverage over 580k real-world grasp attempts to train a deep neural network Q-function with over 1.2M parameters.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Posted Content

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Batch Normalization as mentioned in this paper normalizes layer inputs for each training mini-batch to reduce the internal covariate shift in deep neural networks, and achieves state-of-the-art performance on ImageNet.
Posted Content

Playing Atari with Deep Reinforcement Learning

TL;DR: This work presents the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning, which outperforms all previous approaches on six of the games and surpasses a human expert on three of them.
Proceedings Article

Deep Sparse Rectifier Neural Networks

TL;DR: This paper shows that rectifying neurons are an even better model of biological neurons and yield equal or better performance than hyperbolic tangent networks in spite of the hard non-linearity and non-dierentiabil ity.
Related Papers (5)