scispace - formally typeset
Journal ArticleDOI

Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance.

TLDR
Spectral overlap of the interband transitions of Cu with the nanoshell plasmon resonance results in a striking double-peaked plasMon resonance, a unique phenomenon previously unobserved in other noble or coinage metal nanostructures.
Abstract
The optical properties of metals arise both from optical excitation of interband transitions and their collective electronic, or plasmon, response. Here, we examine the optical properties of Cu, whose strong interband transitions dominate its optical response in the visible region of the spectrum, in a nanoshell geometry. This nanostructure permits the geometrical tuning of the nanoparticle plasmon energy relative to the onset of interband transitions in the metal. Spectral overlap of the interband transitions of Cu with the nanoshell plasmon resonance results in a striking double-peaked plasmon resonance, a unique phenomenon previously unobserved in other noble or coinage metal nanostructures.

read more

Citations
More filters
Journal ArticleDOI

Controlling the synthesis and assembly of silver nanostructures for plasmonic applications

TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Journal ArticleDOI

Localized Surface Plasmon Resonances in Aluminum Nanodisks

TL;DR: The plasmonic properties of arrays of supported Al nanodisks, fabricated by hole-mask colloidal lithography (HCL), are analyzed for the disk diameter range 61-492 nm at a constant disk height of 20 nm and strong and well-defined surface plAsmon resonances are found and experimentally characterized.
Journal ArticleDOI

Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions

TL;DR: In this paper, a systematic study of the mechanisms of Au nanoparticle/TiO2-catalyzed photoreduction of CO2 and water vapor is carried out over a wide range of wavelengths.
Journal ArticleDOI

Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms.

TL;DR: In this work, the radiative and nonradiative damping contributions to the LSPR line width over a broad nanoparticle size range (40-500 nm) for a selection of three metals with fundamentally different bulk dielectric properties are explored experimentally and theoretically.
References
More filters
Journal ArticleDOI

Optical Constants of the Noble Metals

TL;DR: In this paper, the optical constants for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV.
Journal ArticleDOI

Negative Refraction Makes a Perfect Lens

TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment

TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.