scispace - formally typeset
Open AccessProceedings ArticleDOI

Deep Residual Learning for Image Recognition

TLDR
In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Neuro-Inspired Computing With Emerging Nonvolatile Memorys

TL;DR: This comprehensive review summarizes state of the art, challenges, and prospects of the neuro-inspired computing with emerging nonvolatile memory devices and presents a device-circuit-algorithm codesign methodology to evaluate the impact of nonideal device effects on the system-level performance.
Book ChapterDOI

Deep Image Retrieval: Learning Global Representations for Image Search

TL;DR: This work proposes a novel approach for instance-level image retrieval that produces a global and compact fixed-length representation for each image by aggregating many region-wise descriptors by leveraging a ranking framework and projection weights to build the region features.
Proceedings ArticleDOI

MaskGAN: Towards Diverse and Interactive Facial Image Manipulation

TL;DR: MaskGAN as mentioned in this paper proposes MaskGAN to enable diverse and interactive face manipulation by learning style mapping between a free-form user modified mask and a target image, enabling diverse generation results.
Proceedings ArticleDOI

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

TL;DR: Cluster-GCN is proposed, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure and allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy.
Posted Content

A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay

Leslie N. Smith
- 26 Mar 2018 - 
TL;DR: This report shows how to examine the training validation/test loss function for subtle clues of underfitting and overfitting and suggests guidelines for moving toward the optimal balance point and discusses how to increase/decrease the learning rate/momentum to speed up training.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Related Papers (5)
Trending Questions (1)
What is the most effective learning framework?

The most effective learning framework is the residual learning framework, which is able to train deeper neural networks more easily.