scispace - formally typeset
Open AccessProceedings ArticleDOI

Deep Residual Learning for Image Recognition

TLDR
In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A survey of deep learning techniques for autonomous driving

TL;DR: In this article, the authors survey the current state-of-the-art on deep learning technologies used in autonomous driving, including convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm.
Proceedings ArticleDOI

MAttNet: Modular Attention Network for Referring Expression Comprehension

TL;DR: The authors decompose expressions into three modular components related to subject appearance, location, and relationship to other objects in an end-to-end framework, which allows to flexibly adapt to expressions containing different types of information.
Journal ArticleDOI

Benchmark Analysis of Representative Deep Neural Network Architectures

TL;DR: An in-depth analysis of the majority of the deep neural networks (DNNs) proposed in the state of the art for image recognition, with a complete view of what solutions have been explored so far and in which research directions are worth exploring in the future.
Book

Neural Network Methods in Natural Language Processing

TL;DR: Neural networks are a family of powerful machine learning models as mentioned in this paper, and they have been widely used in natural language processing applications such as machine translation, syntactic parsing, and multi-task learning.
Proceedings ArticleDOI

Contrastive Adaptation Network for Unsupervised Domain Adaptation

TL;DR: In contrast, Contrastive Adaptation Network (CAN) as discussed by the authors proposes a new metric which explicitly models the intra-class domain discrepancy and the inter-class discrepancy and designs an alternating update strategy for training CAN in an end-to-end manner.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Related Papers (5)
Trending Questions (1)
What is the most effective learning framework?

The most effective learning framework is the residual learning framework, which is able to train deeper neural networks more easily.