scispace - formally typeset
Open AccessProceedings ArticleDOI

Deep Residual Learning for Image Recognition

TLDR
In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Residual Dense Network for Image Super-Resolution

TL;DR: This paper proposes residual dense block (RDB) to extract abundant local features via dense connected convolutional layers and uses global feature fusion in RDB to jointly and adaptively learn global hierarchical features in a holistic way.
Proceedings Article

Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results

TL;DR: The recently proposed Temporal Ensembling has achieved state-of-the-art results in several semi-supervised learning benchmarks, but it becomes unwieldy when learning large datasets, so Mean Teacher, a method that averages model weights instead of label predictions, is proposed.
Posted Content

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

TL;DR: A systematic evaluation of generic convolutional and recurrent architectures for sequence modeling concludes that the common association between sequence modeling and recurrent networks should be reconsidered, and convolutionals should be regarded as a natural starting point for sequence modeled tasks.
Posted Content

Aggregated Residual Transformations for Deep Neural Networks

TL;DR: On the ImageNet-1K dataset, it is empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy and is more effective than going deeper or wider when the authors increase the capacity.
Posted Content

Least Squares Generative Adversarial Networks

TL;DR: This paper proposes the Least Squares Generative Adversarial Networks (LSGANs) which adopt the least squares loss function for the discriminator, and shows that minimizing the objective function of LSGAN yields minimizing the Pearson X2 divergence.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Related Papers (5)
Trending Questions (1)
What is the most effective learning framework?

The most effective learning framework is the residual learning framework, which is able to train deeper neural networks more easily.