scispace - formally typeset
Open AccessProceedings ArticleDOI

Deep Residual Learning for Image Recognition

TLDR
In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection

TL;DR: Zhang et al. as discussed by the authors proposed Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object, which significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them.
Posted Content

Large Batch Training of Convolutional Networks

TL;DR: It is argued that the current recipe for large batch training (linear learning rate scaling with warm-up) is not general enough and training may diverge and a new training algorithm based on Layer-wise Adaptive Rate Scaling (LARS) is proposed.
Journal ArticleDOI

Convolutional Neural Networks for Diabetic Retinopathy

TL;DR: A network with CNN architecture and data augmentation is developed which can identify the intricate features involved in the classification task such as micro-aneurysms, exudate and haemorrhages on the retina and consequently provide a diagnosis automatically and without user input.
Posted Content

Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training.

TL;DR: This paper proposes a novel UDA framework based on an iterative self-training (ST) procedure, where the problem is formulated as latent variable loss minimization, and can be solved by alternatively generating pseudo labels on target data and re-training the model with these labels.
Posted Content

Rapid AI Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring using Deep Learning CT Image Analysis

TL;DR: Develop AI-based automated CT image analysis tools for detection, quantification, and tracking of Coronavirus demonstrate they can differentiate coronavirus patients from non-patients and measure the progression of disease in each patient over time using a 3D volume review.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Related Papers (5)
Trending Questions (1)
What is the most effective learning framework?

The most effective learning framework is the residual learning framework, which is able to train deeper neural networks more easily.