scispace - formally typeset
Open AccessProceedings ArticleDOI

Deep Residual Learning for Image Recognition

TLDR
In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

TL;DR: Zhang et al. as discussed by the authors proposed a denoising convolutional neural network (DnCNN) to handle Gaussian denoizing with unknown noise level, which implicitly removes the latent clean image in the hidden layers.
Posted Content

Large Scale GAN Training for High Fidelity Natural Image Synthesis

TL;DR: BigGAN as mentioned in this paper applies orthogonal regularization to the generator, allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the generator's input, leading to models which set the new state of the art in class-conditional image synthesis.
Posted Content

Pruning Filters for Efficient ConvNets

TL;DR: The authors prune filters from CNNs that are identified as having a small effect on the output accuracy, by removing whole filters in the network together with their connecting feature maps, the computation costs are reduced significantly.
Book ChapterDOI

Simple Baselines for Human Pose Estimation and Tracking

TL;DR: In this article, the authors provide simple and effective baseline methods for pose estimation, which are helpful for inspiring and evaluating new ideas for the field and achieve state-of-the-art results on challenging benchmarks.
Proceedings Article

Language modeling with gated convolutional networks

TL;DR: A finite context approach through stacked convolutions, which can be more efficient since they allow parallelization over sequential tokens, is developed and is the first time a non-recurrent approach is competitive with strong recurrent models on these large scale language tasks.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Related Papers (5)
Trending Questions (1)
What is the most effective learning framework?

The most effective learning framework is the residual learning framework, which is able to train deeper neural networks more easily.