scispace - formally typeset
Open AccessProceedings ArticleDOI

Deep Residual Learning for Image Recognition

TLDR
In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

TL;DR: This work presents a diagnostic dataset that tests a range of visual reasoning abilities and uses this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
Proceedings ArticleDOI

Context Encoding for Semantic Segmentation

TL;DR: The proposed Context Encoding Module significantly improves semantic segmentation results with only marginal extra computation cost over FCN, and can improve the feature representation of relatively shallow networks for the image classification on CIFAR-10 dataset.
Proceedings ArticleDOI

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding

TL;DR: This work extensively evaluates Multimodal Compact Bilinear pooling (MCB) on the visual question answering and grounding tasks and consistently shows the benefit of MCB over ablations without MCB.
Journal ArticleDOI

EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces

TL;DR: This work introduces EEGNet, a compact convolutional neural network for EEG-based BCIs, and introduces the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI.
Proceedings Article

Unsupervised domain adaptation with residual transfer networks

TL;DR: Empirical evidence shows that the new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source domain and unlabeledData in the target domain outperforms state of the art methods on standard domain adaptation benchmarks.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Related Papers (5)
Trending Questions (1)
What is the most effective learning framework?

The most effective learning framework is the residual learning framework, which is able to train deeper neural networks more easily.