scispace - formally typeset
Open AccessProceedings ArticleDOI

Deep Residual Learning for Image Recognition

TLDR
In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

ImageNet classification with deep convolutional neural networks

TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Proceedings ArticleDOI

Densely Connected Convolutional Networks

TL;DR: DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Journal ArticleDOI

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Posted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Book ChapterDOI

SSD: Single Shot MultiBox Detector

TL;DR: The approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, which makes SSD easy to train and straightforward to integrate into systems that require a detection component.
References
More filters
Proceedings Article

FitNets: Hints for Thin Deep Nets

TL;DR: This paper extends the idea of a student network that could imitate the soft output of a larger teacher network or ensemble of networks, using not only the outputs but also the intermediate representations learned by the teacher as hints to improve the training process and final performance of the student.
Journal ArticleDOI

Product Quantization for Nearest Neighbor Search

TL;DR: This paper introduces a product quantization-based approach for approximate nearest neighbor search to decompose the space into a Cartesian product of low-dimensional subspaces and to quantize each subspace separately.
Book

A multigrid tutorial

TL;DR: This paper presents an implementation of Multilevel adaptive methods for Algebraic multigrid (AMG), a version of which has already been described in more detail in the preface.
Proceedings ArticleDOI

Fisher Kernels on Visual Vocabularies for Image Categorization

TL;DR: This work shows that Fisher kernels can actually be understood as an extension of the popular bag-of-visterms, and proposes to apply this framework to image categorization where the input signals are images and where the underlying generative model is a visual vocabulary: a Gaussian mixture model which approximates the distribution of low-level features in images.
Proceedings Article

Maxout Networks

TL;DR: A simple new model called maxout is defined designed to both facilitate optimization by dropout and improve the accuracy of dropout's fast approximate model averaging technique.
Related Papers (5)
Trending Questions (1)
What is the most effective learning framework?

The most effective learning framework is the residual learning framework, which is able to train deeper neural networks more easily.