scispace - formally typeset
Journal ArticleDOI

Direct numerical simulation of turbulent channel flow up to

TLDR
In this paper, a direct numerical simulation of incompressible channel flow at a friction Reynolds number of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows.
Abstract
A direct numerical simulation of incompressible channel flow at a friction Reynolds number ( ) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Karman constant . There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits dependence over a short range in wavenumber . Further, consistent with previous experimental observations, when these spectra are multiplied by (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the range.

read more

Citations
More filters
Journal ArticleDOI

The Structure of Turbulent Shear Flow

Francis H. Clauser
- 01 Jan 1957 - 
TL;DR: The Structure of Turbulent Shear Flow by Dr. A.Townsend as mentioned in this paper is a well-known work in the field of fluid dynamics and has been used extensively in many applications.
Journal ArticleDOI

Coherent structures in wall-bounded turbulence

TL;DR: In this article, the authors describe wall-bounded turbulence as a deterministic high-dimensional dynamical system of interacting coherent structures, defined as eddies with enough internal dynamics to behave relatively autonomously from any remaining incoherent part of the flow.
Journal ArticleDOI

Learning data-driven discretizations for partial differential equations.

TL;DR: In this paper, a method for learning optimized approximations to PDEs based on actual solutions to the known underlying equations is proposed, using neural networks to estimate spatial derivatives, which are optimized end to end to best satisfy the equations on a low-resolution grid.
Book ChapterDOI

Coherent Structures in Wall-Bounded Turbulence

TL;DR: In this article, the authors reviewed the current knowledge about some particular kinds of coherent structures in the logarithmic and outer layers of wall-bounded turbulent flows and argued that a concerned effort is required to quantitatively identify which one (or ones) of the plausible available dynamical models is a better representation of the observed behaviour.
Journal ArticleDOI

Mean velocity scaling for compressible wall turbulence with heat transfer

TL;DR: In this paper, an alternative Van Driest transformation is derived, based on arguments about log-layer scaling and near-wall momentum conservation, and tested on supersonic turbulent channel flows and boundary layers.
References
More filters
Journal ArticleDOI

Turbulence statistics in fully developed channel flow at low reynolds number

TL;DR: In this article, a direct numerical simulation of a turbulent channel flow is performed, where the unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points.
Book

The Structure of Turbulent Shear Flow

TL;DR: In this paper, the authors present a method to find the optimal set of words for a given sentence in a sentence using the Bibliogr. Index Reference Record created on 2004-09-07, modified on 2016-08-08
Journal ArticleDOI

Direct numerical simulation of turbulent channel flow up to Reτ=590

TL;DR: In this paper, numerical simulations of fully developed turbulent channel flow at three Reynolds numbers up to Reτ=590 were reported, and it was noted that the higher Reynolds number simulations exhibit fewer low Reynolds number effects than previous simulations at Reτ = 180.
Journal ArticleDOI

Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003

Sergio Hoyas, +1 more
- 11 Jan 2006 - 
TL;DR: In this article, a new numerical simulation of a turbulent channel in a large box at Reτ=2003 is described and briefly compared with simulations at lower Reynolds numbers and with experiments.