scispace - formally typeset
Open AccessProceedings Article

Dropout as a Bayesian approximation: representing model uncertainty in deep learning

Reads0
Chats0
TLDR
A new theoretical framework is developed casting dropout training in deep neural networks (NNs) as approximate Bayesian inference in deep Gaussian processes, which mitigates the problem of representing uncertainty in deep learning without sacrificing either computational complexity or test accuracy.
Abstract
Deep learning tools have gained tremendous attention in applied machine learning. However such tools for regression and classification do not capture model uncertainty. In comparison, Bayesian models offer a mathematically grounded framework to reason about model uncertainty, but usually come with a prohibitive computational cost. In this paper we develop a new theoretical framework casting dropout training in deep neural networks (NNs) as approximate Bayesian inference in deep Gaussian processes. A direct result of this theory gives us tools to model uncertainty with dropout NNs - extracting information from existing models that has been thrown away so far. This mitigates the problem of representing uncertainty in deep learning without sacrificing either computational complexity or test accuracy. We perform an extensive study of the properties of dropout's uncertainty. Various network architectures and nonlinearities are assessed on tasks of regression and classification, using MNIST as an example. We show a considerable improvement in predictive log-likelihood and RMSE compared to existing state-of-the-art methods, and finish by using dropout's uncertainty in deep reinforcement learning.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep Neural Network Initialization With Decision Trees

TL;DR: By combining the user-friendly features of decision tree models with the flexibility and scalability of deep neural networks, DJINN is an attractive algorithm for training predictive models on a wide range of complex data sets.
Journal ArticleDOI

Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments

TL;DR: In this article, explainable deep learning methods are grouped into three main categories: efficient deep learning via model compression and acceleration, as well as robustness and stability in deep learning.
Journal ArticleDOI

A Survey on Policy Search Algorithms for Learning Robot Controllers in a Handful of Trials

TL;DR: This article shows that a first strategy is to leverage prior knowledge on the policy structure, which is to create data-driven surrogate models of the expected reward or the dynamical model, so that the policy optimizer queries the model instead of the real system.
Book ChapterDOI

Bayesian neural networks: An introduction and survey

TL;DR: Different approximate inference methods are compared, and used to highlight where future research can improve on current methods.
Posted Content

Efficient Exploration through Bayesian Deep Q-Networks

TL;DR: Bayesian Deep Q-Network (BDQN), a practical Thompson sampling based Reinforcement Learning (RL) Algorithm, is proposed, which can be trained with fast closed-form updates and its samples can be drawn efficiently through the Gaussian distribution.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Related Papers (5)