scispace - formally typeset
Open AccessProceedings Article

Dropout as a Bayesian approximation: representing model uncertainty in deep learning

Reads0
Chats0
TLDR
A new theoretical framework is developed casting dropout training in deep neural networks (NNs) as approximate Bayesian inference in deep Gaussian processes, which mitigates the problem of representing uncertainty in deep learning without sacrificing either computational complexity or test accuracy.
Abstract
Deep learning tools have gained tremendous attention in applied machine learning. However such tools for regression and classification do not capture model uncertainty. In comparison, Bayesian models offer a mathematically grounded framework to reason about model uncertainty, but usually come with a prohibitive computational cost. In this paper we develop a new theoretical framework casting dropout training in deep neural networks (NNs) as approximate Bayesian inference in deep Gaussian processes. A direct result of this theory gives us tools to model uncertainty with dropout NNs - extracting information from existing models that has been thrown away so far. This mitigates the problem of representing uncertainty in deep learning without sacrificing either computational complexity or test accuracy. We perform an extensive study of the properties of dropout's uncertainty. Various network architectures and nonlinearities are assessed on tasks of regression and classification, using MNIST as an example. We show a considerable improvement in predictive log-likelihood and RMSE compared to existing state-of-the-art methods, and finish by using dropout's uncertainty in deep reinforcement learning.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Ensemble Distribution Distillation

TL;DR: In this article, a prior network is proposed to distill the distribution of the predictions from an ensemble, rather than just the average prediction, into a single model, which is useful for uncertainty estimation.
Journal ArticleDOI

Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation

TL;DR: The results of this study offer considerable insight into the predictive uncertainty estimation and out-of-distribution detection in medical image segmentation and provide practical recipes for confidence calibration.
Journal ArticleDOI

Reset-free Trial-and-Error Learning for Robot Damage Recovery

TL;DR: A novel learning algorithm called “Reset-free Trial-and-Error” (RTE) is introduced that breaks the complexity by pre-generating hundreds of possible behaviors with a dynamics simulator of the intact robot, and allows complex robots to quickly recover from damage while completing their tasks and taking the environment into account.
Proceedings Article

Detecting Out-of-Distribution Examples with Gram Matrices

TL;DR: For all channel-pairs, if any of the computed correlation values are greater (or lesser) than corresponding the maximum (or minimum) value extracted for training data points classified as , the extent of deviation is noted.
Posted Content

Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty

TL;DR: This work describes how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems and outlines methods for displaying uncertainty to stakeholders and recommends how to collect information required for incorporating uncertainty into existing ML pipelines.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Related Papers (5)