scispace - formally typeset
Open AccessJournal Article

Electronic properties of graphene multilayers

TLDR
In this article, the effects of disorder in the electronic properties of graphene multilayers, with special focus on the bilayer and the infinite stack, have been studied, and it is shown that at low energies and long wavelengths, the electronic self-energies and density of states exhibit behavior with divergences near half filling.
Abstract
We study the effects of disorder in the electronic properties of graphene multilayers, with special focus on the bilayer and the infinite stack. At low energies and long wavelengths, the electronic self-energies and density of states exhibit behavior with divergences near half filling. As a consequence, the spectral functions and the conductivities acquire anomalous properties. In particular, we show that the quasiparticle decay rate has a minimum as a function of energy, there is a universal minimum value for the in-plane conductivity of order e(2)/h per plane and, unexpectedly, the c-axis conductivity is enhanced by disorder at low doping, leading to an enormous conductivity anisotropy at low temperatures.

read more

Citations
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Electronic transport in two-dimensional graphene

TL;DR: In this paper, a broad review of fundamental electronic properties of two-dimensional graphene with the emphasis on density and temperature dependent carrier transport in doped or gated graphene structures is provided.
Journal ArticleDOI

The electronic properties of bilayer graphene.

TL;DR: The tight-binding model is used to describe optical and transport properties including the integer quantum Hall effect, and the also discusses orbital magnetism, phonons and the influence of strain on electronic properties.
Journal ArticleDOI

Phase-coherent transport in graphene quantum billiards.

TL;DR: By performing low-temperature transport spectroscopy on single-layer and bilayer graphene, ballistic propagation and quantum interference of multiply reflected waves of charges from normal electrodes and multiple Andreev reflections from superconducting electrodes are observed, thereby realizing quantum billiards in which scattering only occurs at the boundaries.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal Article

Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.